1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
use std::borrow::Cow;
#[cfg(feature = "color_quant")]
use std::collections::{HashMap, HashSet};

/// Disposal method
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[repr(u8)]
pub enum DisposalMethod {
    /// StreamingDecoder is not required to take any action.
    Any = 0,
    /// Do not dispose.
    Keep = 1,
    /// Restore to background color.
    Background = 2,
    /// Restore to previous.
    Previous = 3,
}

impl DisposalMethod {
    /// Converts `u8` to `Option<Self>`
    #[must_use]
    pub fn from_u8(n: u8) -> Option<DisposalMethod> {
        match n {
            0 => Some(DisposalMethod::Any),
            1 => Some(DisposalMethod::Keep),
            2 => Some(DisposalMethod::Background),
            3 => Some(DisposalMethod::Previous),
            _ => None,
        }
    }
}

/// Known GIF block labels.
///
/// Note that the block uniquely specifies the layout of bytes that follow and how they are
/// framed. For example, the header always has a fixed length but is followed by a variable amount
/// of additional data. An image descriptor may be followed by a local color table depending on
/// information read in it. Therefore, it doesn't make sense to continue parsing after encountering
/// an unknown block as the semantics of following bytes are unclear.
///
/// The extension block provides a common framing for an arbitrary amount of application specific
/// data which may be ignored.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[repr(u8)]
pub enum Block {
    /// Image block.
    Image = 0x2C,
    /// Extension block.
    Extension = 0x21,
    /// Image trailer.
    Trailer = 0x3B,
}

impl Block {
    /// Converts `u8` to `Option<Self>`
    #[must_use]
    pub fn from_u8(n: u8) -> Option<Block> {
        match n {
            0x2C => Some(Block::Image),
            0x21 => Some(Block::Extension),
            0x3B => Some(Block::Trailer),
            _ => None,
        }
    }
}

/// A newtype wrapper around an arbitrary extension ID.
///
/// An extension is some amount of byte data organized in sub-blocks so that one can skip over it
/// without knowing the semantics. Though technically you likely want to use a `Application`
/// extension, the library tries to stay flexible here.
///
/// This allows us to customize the set of impls compared to a raw `u8`. It also clarifies the
/// intent and gives some inherent methods for interoperability with known extension types.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct AnyExtension(pub u8);

/// Known GIF extension labels.
///
/// These are extensions which may be interpreted by the library and to which a specification with
/// the internal data layout is known.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[repr(u8)]
pub enum Extension {
    /// Plain Text extension.
    ///
    /// This instructs the decoder to render a text as characters in a grid of cells, in a
    /// mono-spaced font of its choosing. This is seldom actually implemented and ignored by
    /// ImageMagick. The color is always taken from the global table which further complicates any
    /// use. No real information on the frame sequencing of this block is available in the
    /// standard.
    Text = 0x01,
    /// Control extension.
    Control = 0xF9,
    /// Comment extension.
    Comment = 0xFE,
    /// Application extension.
    ///
    /// See [ImageMagick] for an idea of commonly recognized extensions.
    ///
    /// [ImageMagick]: https://github.com/ImageMagick/ImageMagick/blob/b0b58c6303195928060f55f9c3ca8233ab7f7733/coders/gif.c#L1128
    Application = 0xFF,
}

impl AnyExtension {
    /// Decode the label as a known extension.
    #[must_use]
    pub fn into_known(self) -> Option<Extension> {
        Extension::from_u8(self.0)
    }
}

impl From<Extension> for AnyExtension {
    fn from(ext: Extension) -> Self {
        AnyExtension(ext as u8)
    }
}

impl Extension {
    /// Converts `u8` to a `Extension` if it is known.
    #[must_use]
    pub fn from_u8(n: u8) -> Option<Extension> {
        match n {
            0x01 => Some(Extension::Text),
            0xF9 => Some(Extension::Control),
            0xFE => Some(Extension::Comment),
            0xFF => Some(Extension::Application),
            _ => None,
        }
    }
}

/// A GIF frame
#[derive(Debug, Clone)]
pub struct Frame<'a> {
    /// Frame delay in units of 10 ms.
    pub delay: u16,
    /// Disposal method.
    pub dispose: DisposalMethod,
    /// Transparent index (if available).
    pub transparent: Option<u8>,
    /// True if the frame needs user input to be displayed.
    pub needs_user_input: bool,
    /// Offset from the top border of the canvas.
    pub top: u16,
    /// Offset from the left border of the canvas.
    pub left: u16,
    /// Width of the frame.
    pub width: u16,
    /// Height of the frame.
    pub height: u16,
    /// True if the image is interlaced.
    pub interlaced: bool,
    /// Frame local color palette if available.
    pub palette: Option<Vec<u8>>,
    /// Buffer containing the image data.
    /// Only indices unless configured differently.
    pub buffer: Cow<'a, [u8]>,
}

impl<'a> Default for Frame<'a> {
    fn default() -> Frame<'a> {
        Frame {
            delay: 0,
            dispose: DisposalMethod::Keep,
            transparent: None,
            needs_user_input: false,
            top: 0,
            left: 0,
            width: 0,
            height: 0,
            interlaced: false,
            palette: None,
            buffer: Cow::Borrowed(&[]),
        }
    }
}

impl Frame<'static> {
    /// Creates a frame from pixels in RGBA format.
    ///
    /// This is a lossy method. The `gif` format does not support arbitrary alpha but only a 1-bit
    /// transparency mask per pixel. Any non-zero alpha value will be interpreted as a fully opaque
    /// pixel. Additionally, only 256 colors can appear in a single frame. The palette will be
    /// reduced by the NeuQuant algorithm if necessary. Different frames have independent palettes.
    ///
    /// *Note: This method is not optimized for speed.*
    ///
    /// # Panics:
    /// *   If the length of pixels does not equal `width * height * 4`.
    #[cfg(feature = "color_quant")]
    pub fn from_rgba(width: u16, height: u16, pixels: &mut [u8]) -> Frame<'static> {
        Frame::from_rgba_speed(width, height, pixels, 1)
    }

    /// Creates a frame from pixels in RGBA format.
    ///
    /// `speed` is a value in the range [1, 30].
    /// The higher the value the faster it runs at the cost of image quality.
    /// A `speed` of 10 is a good compromise between speed and quality.
    ///
    /// This is a lossy method. The `gif` format does not support arbitrary alpha but only a 1-bit
    /// transparency mask per pixel. Any non-zero alpha value will be interpreted as a fully opaque
    /// pixel. Additionally, only 256 colors can appear in a single frame. The palette will be
    /// reduced by the NeuQuant algorithm if necessary. Different frames have independent palettes.
    ///
    /// # Panics:
    /// *   If the length of pixels does not equal `width * height * 4`.
    /// *   If `speed < 1` or `speed > 30`
    #[cfg(feature = "color_quant")]
    pub fn from_rgba_speed(width: u16, height: u16, pixels: &mut [u8], speed: i32) -> Frame<'static> {
        assert_eq!(width as usize * height as usize * 4, pixels.len(), "Too much or too little pixel data for the given width and height to create a GIF Frame");
        assert!(speed >= 1 && speed <= 30, "speed needs to be in the range [1, 30]");
        let mut transparent = None;
        for pix in pixels.chunks_exact_mut(4) {
            if pix[3] != 0 {
                pix[3] = 0xFF;
            } else {
                transparent = Some([pix[0], pix[1], pix[2], pix[3]]);
            }
        }

        // Attempt to build a palette of all colors. If we go over 256 colors,
        // switch to the NeuQuant algorithm.
        let mut colors: HashSet<(u8, u8, u8, u8)> = HashSet::new();
        for pixel in pixels.chunks_exact(4) {
            if colors.insert((pixel[0], pixel[1], pixel[2], pixel[3])) && colors.len() > 256 {
                // > 256 colours, let's use NeuQuant.
                let nq = color_quant::NeuQuant::new(speed, 256, pixels);

                return Frame {
                    width,
                    height,
                    buffer: Cow::Owned(pixels.chunks_exact(4).map(|pix| nq.index_of(pix) as u8).collect()),
                    palette: Some(nq.color_map_rgb()),
                    transparent: transparent.map(|t| nq.index_of(&t) as u8),
                    ..Frame::default()
                };
            }
        }

        // Palette size <= 256 elements, we can build an exact palette.
        let mut colors_vec: Vec<(u8, u8, u8, u8)> = colors.into_iter().collect();
        colors_vec.sort_unstable();
        let palette = colors_vec.iter().flat_map(|&(r, g, b, _a)| [r, g, b]).collect();
        let colors_lookup: HashMap<(u8, u8, u8, u8), u8> = colors_vec.into_iter().zip(0..=255).collect();

        let index_of = | pixel: &[u8] |
            colors_lookup.get(&(pixel[0], pixel[1], pixel[2], pixel[3])).copied().unwrap_or(0);

        return Frame {
            width,
            height,
            buffer: Cow::Owned(pixels.chunks_exact(4).map(index_of).collect()),
            palette: Some(palette),
            transparent: transparent.map(|t| index_of(&t)),
            ..Frame::default()
        };
    }

    /// Creates a frame from a palette and indexed pixels.
    ///
    /// # Panics:
    /// *   If the length of pixels does not equal `width * height`.
    /// *   If the length of palette > `256 * 3`.
    pub fn from_palette_pixels(width: u16, height: u16, pixels: impl Into<Vec<u8>>, palette: impl Into<Vec<u8>>, transparent: Option<u8>) -> Frame<'static> {
        let pixels = pixels.into();
        let palette = palette.into();
        assert_eq!(width as usize * height as usize, pixels.len(), "Too many or too little pixels for the given width and height to create a GIF Frame");
        assert!(palette.len() <= 256*3, "Too many palette values to create a GIF Frame");

        Frame {
            width,
            height,
            buffer: Cow::Owned(pixels),
            palette: Some(palette),
            transparent,
            ..Frame::default()
        }
    }

    /// Creates a frame from indexed pixels in the global palette.
    ///
    /// # Panics:
    /// *   If the length of pixels does not equal `width * height`.
    pub fn from_indexed_pixels(width: u16, height: u16, pixels: impl Into<Vec<u8>>, transparent: Option<u8>) -> Frame<'static> {
        let pixels = pixels.into();
        assert_eq!(width as usize * height as usize, pixels.len(), "Too many or too little pixels for the given width and height to create a GIF Frame");

        Frame {
            width,
            height,
            buffer: Cow::Owned(pixels.clone()),
            palette: None,
            transparent,
            ..Frame::default()
        }
    }

    /// Creates a frame from pixels in RGB format.
    ///
    /// This is a lossy method. In the `gif` format only 256 colors can appear in a single frame.
    /// The palette will be reduced by the NeuQuant algorithm if necessary. Different frames have
    /// independent palettes.
    ///
    /// *Note: This method is not optimized for speed.*
    ///
    /// # Panics:
    /// *   If the length of pixels does not equal `width * height * 3`.
    #[cfg(feature = "color_quant")]
    #[must_use]
    pub fn from_rgb(width: u16, height: u16, pixels: &[u8]) -> Frame<'static> {
        Frame::from_rgb_speed(width, height, pixels, 1)
    }

    /// Creates a frame from pixels in RGB format.
    ///
    /// `speed` is a value in the range [1, 30].
    ///
    /// This is a lossy method. In the `gif` format only 256 colors can appear in a single frame.
    /// The palette will be reduced by the NeuQuant algorithm if necessary. Different frames have
    /// independent palettes.
    ///
    /// The higher the value the faster it runs at the cost of image quality.
    /// A `speed` of 10 is a good compromise between speed and quality.
    ///
    /// # Panics:
    /// *   If the length of pixels does not equal `width * height * 3`.
    /// *   If `speed < 1` or `speed > 30`
    #[cfg(feature = "color_quant")]
    #[must_use]
    pub fn from_rgb_speed(width: u16, height: u16, pixels: &[u8], speed: i32) -> Frame<'static> {
        assert_eq!(width as usize * height as usize * 3, pixels.len(), "Too much or too little pixel data for the given width and height to create a GIF Frame");
        let mut vec: Vec<u8> = Vec::new();
        vec.try_reserve_exact(pixels.len() + width as usize * height as usize).expect("OOM");
        for v in pixels.chunks_exact(3) {
            vec.extend_from_slice(&[v[0], v[1], v[2], 0xFF]);
        }
        Frame::from_rgba_speed(width, height, &mut vec, speed)
    }

    /// Leaves empty buffer and empty palette behind
    #[inline]
    pub(crate) fn take(&mut self) -> Self {
        Frame {
            delay: self.delay,
            dispose: self.dispose,
            transparent: self.transparent,
            needs_user_input: self.needs_user_input,
            top: self.top,
            left: self.left,
            width: self.width,
            height: self.height,
            interlaced: self.interlaced,
            palette: std::mem::take(&mut self.palette),
            buffer: std::mem::replace(&mut self.buffer, Cow::Borrowed(&[])),
        }
    }
}

#[test]
#[cfg(feature = "color_quant")]
// Creating the `colors_lookup` hashmap in Frame::from_rgba_speed panics due to
// overflow while bypassing NeuQuant and zipping a RangeFrom with 256 colors.
// Changing .zip(0_u8..) to .zip(0_u8..=255) fixes this issue.
fn rgba_speed_avoid_panic_256_colors() {
    let side = 16;
    let pixel_data: Vec<u8> = (0..=255).map(|a| vec![a, a, a]).flatten().collect();
    let _ = Frame::from_rgb(side, side, &pixel_data);
}