use std::fmt;
use std::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};
use crate::Vec2b;
#[repr(C)]
#[derive(Clone, Copy, Default, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
#[cfg_attr(feature = "bytemuck", derive(bytemuck::Pod, bytemuck::Zeroable))]
pub struct Vec2 {
pub x: f32,
pub y: f32,
}
#[inline(always)]
pub const fn vec2(x: f32, y: f32) -> Vec2 {
Vec2 { x, y }
}
impl From<[f32; 2]> for Vec2 {
#[inline(always)]
fn from(v: [f32; 2]) -> Self {
Self { x: v[0], y: v[1] }
}
}
impl From<&[f32; 2]> for Vec2 {
#[inline(always)]
fn from(v: &[f32; 2]) -> Self {
Self { x: v[0], y: v[1] }
}
}
impl From<Vec2> for [f32; 2] {
#[inline(always)]
fn from(v: Vec2) -> Self {
[v.x, v.y]
}
}
impl From<&Vec2> for [f32; 2] {
#[inline(always)]
fn from(v: &Vec2) -> Self {
[v.x, v.y]
}
}
impl From<(f32, f32)> for Vec2 {
#[inline(always)]
fn from(v: (f32, f32)) -> Self {
Self { x: v.0, y: v.1 }
}
}
impl From<&(f32, f32)> for Vec2 {
#[inline(always)]
fn from(v: &(f32, f32)) -> Self {
Self { x: v.0, y: v.1 }
}
}
impl From<Vec2> for (f32, f32) {
#[inline(always)]
fn from(v: Vec2) -> Self {
(v.x, v.y)
}
}
impl From<&Vec2> for (f32, f32) {
#[inline(always)]
fn from(v: &Vec2) -> Self {
(v.x, v.y)
}
}
impl From<Vec2b> for Vec2 {
#[inline(always)]
fn from(v: Vec2b) -> Self {
Self {
x: v.x as i32 as f32,
y: v.y as i32 as f32,
}
}
}
#[cfg(feature = "mint")]
impl From<mint::Vector2<f32>> for Vec2 {
#[inline]
fn from(v: mint::Vector2<f32>) -> Self {
Self::new(v.x, v.y)
}
}
#[cfg(feature = "mint")]
impl From<Vec2> for mint::Vector2<f32> {
#[inline]
fn from(v: Vec2) -> Self {
Self { x: v.x, y: v.y }
}
}
impl Vec2 {
pub const X: Self = Self { x: 1.0, y: 0.0 };
pub const Y: Self = Self { x: 0.0, y: 1.0 };
pub const RIGHT: Self = Self { x: 1.0, y: 0.0 };
pub const LEFT: Self = Self { x: -1.0, y: 0.0 };
pub const UP: Self = Self { x: 0.0, y: -1.0 };
pub const DOWN: Self = Self { x: 0.0, y: 1.0 };
pub const ZERO: Self = Self { x: 0.0, y: 0.0 };
pub const INFINITY: Self = Self::splat(f32::INFINITY);
pub const NAN: Self = Self::splat(f32::NAN);
#[inline(always)]
pub const fn new(x: f32, y: f32) -> Self {
Self { x, y }
}
#[inline(always)]
pub const fn splat(v: f32) -> Self {
Self { x: v, y: v }
}
#[inline(always)]
pub fn to_pos2(self) -> crate::Pos2 {
crate::Pos2 {
x: self.x,
y: self.y,
}
}
#[must_use]
#[inline(always)]
pub fn normalized(self) -> Self {
let len = self.length();
if len <= 0.0 {
self
} else {
self / len
}
}
#[inline(always)]
pub fn is_normalized(self) -> bool {
(self.length_sq() - 1.0).abs() < 2e-6
}
#[inline(always)]
pub fn rot90(self) -> Self {
vec2(self.y, -self.x)
}
#[inline(always)]
pub fn length(self) -> f32 {
self.x.hypot(self.y)
}
#[inline(always)]
pub fn length_sq(self) -> f32 {
self.x * self.x + self.y * self.y
}
#[inline(always)]
pub fn angle(self) -> f32 {
self.y.atan2(self.x)
}
#[inline(always)]
pub fn angled(angle: f32) -> Self {
let (sin, cos) = angle.sin_cos();
vec2(cos, sin)
}
#[must_use]
#[inline(always)]
pub fn floor(self) -> Self {
vec2(self.x.floor(), self.y.floor())
}
#[must_use]
#[inline(always)]
pub fn round(self) -> Self {
vec2(self.x.round(), self.y.round())
}
#[must_use]
#[inline(always)]
pub fn ceil(self) -> Self {
vec2(self.x.ceil(), self.y.ceil())
}
#[must_use]
#[inline]
pub fn abs(self) -> Self {
vec2(self.x.abs(), self.y.abs())
}
#[inline(always)]
pub fn is_finite(self) -> bool {
self.x.is_finite() && self.y.is_finite()
}
#[inline(always)]
pub fn any_nan(self) -> bool {
self.x.is_nan() || self.y.is_nan()
}
#[must_use]
#[inline]
pub fn min(self, other: Self) -> Self {
vec2(self.x.min(other.x), self.y.min(other.y))
}
#[must_use]
#[inline]
pub fn max(self, other: Self) -> Self {
vec2(self.x.max(other.x), self.y.max(other.y))
}
#[inline]
pub fn dot(self, other: Self) -> f32 {
self.x * other.x + self.y * other.y
}
#[must_use]
#[inline(always)]
pub fn min_elem(self) -> f32 {
self.x.min(self.y)
}
#[inline(always)]
#[must_use]
pub fn max_elem(self) -> f32 {
self.x.max(self.y)
}
#[inline]
#[must_use]
pub fn yx(self) -> Self {
Self {
x: self.y,
y: self.x,
}
}
#[must_use]
#[inline]
pub fn clamp(self, min: Self, max: Self) -> Self {
Self {
x: self.x.clamp(min.x, max.x),
y: self.y.clamp(min.y, max.y),
}
}
}
impl std::ops::Index<usize> for Vec2 {
type Output = f32;
#[inline(always)]
fn index(&self, index: usize) -> &f32 {
match index {
0 => &self.x,
1 => &self.y,
_ => panic!("Vec2 index out of bounds: {index}"),
}
}
}
impl std::ops::IndexMut<usize> for Vec2 {
#[inline(always)]
fn index_mut(&mut self, index: usize) -> &mut f32 {
match index {
0 => &mut self.x,
1 => &mut self.y,
_ => panic!("Vec2 index out of bounds: {index}"),
}
}
}
impl Eq for Vec2 {}
impl Neg for Vec2 {
type Output = Self;
#[inline(always)]
fn neg(self) -> Self {
vec2(-self.x, -self.y)
}
}
impl AddAssign for Vec2 {
#[inline(always)]
fn add_assign(&mut self, rhs: Self) {
*self = Self {
x: self.x + rhs.x,
y: self.y + rhs.y,
};
}
}
impl SubAssign for Vec2 {
#[inline(always)]
fn sub_assign(&mut self, rhs: Self) {
*self = Self {
x: self.x - rhs.x,
y: self.y - rhs.y,
};
}
}
impl Add for Vec2 {
type Output = Self;
#[inline(always)]
fn add(self, rhs: Self) -> Self {
Self {
x: self.x + rhs.x,
y: self.y + rhs.y,
}
}
}
impl Sub for Vec2 {
type Output = Self;
#[inline(always)]
fn sub(self, rhs: Self) -> Self {
Self {
x: self.x - rhs.x,
y: self.y - rhs.y,
}
}
}
impl Mul<Self> for Vec2 {
type Output = Self;
#[inline(always)]
fn mul(self, vec: Self) -> Self {
Self {
x: self.x * vec.x,
y: self.y * vec.y,
}
}
}
impl Div<Self> for Vec2 {
type Output = Self;
#[inline(always)]
fn div(self, rhs: Self) -> Self {
Self {
x: self.x / rhs.x,
y: self.y / rhs.y,
}
}
}
impl MulAssign<f32> for Vec2 {
#[inline(always)]
fn mul_assign(&mut self, rhs: f32) {
self.x *= rhs;
self.y *= rhs;
}
}
impl DivAssign<f32> for Vec2 {
#[inline(always)]
fn div_assign(&mut self, rhs: f32) {
self.x /= rhs;
self.y /= rhs;
}
}
impl Mul<f32> for Vec2 {
type Output = Self;
#[inline(always)]
fn mul(self, factor: f32) -> Self {
Self {
x: self.x * factor,
y: self.y * factor,
}
}
}
impl Mul<Vec2> for f32 {
type Output = Vec2;
#[inline(always)]
fn mul(self, vec: Vec2) -> Vec2 {
Vec2 {
x: self * vec.x,
y: self * vec.y,
}
}
}
impl Div<f32> for Vec2 {
type Output = Self;
#[inline(always)]
fn div(self, factor: f32) -> Self {
Self {
x: self.x / factor,
y: self.y / factor,
}
}
}
impl fmt::Debug for Vec2 {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if let Some(precision) = f.precision() {
write!(f, "[{1:.0$} {2:.0$}]", precision, self.x, self.y)
} else {
write!(f, "[{:.1} {:.1}]", self.x, self.y)
}
}
}
impl fmt::Display for Vec2 {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("[")?;
self.x.fmt(f)?;
f.write_str(" ")?;
self.y.fmt(f)?;
f.write_str("]")?;
Ok(())
}
}
#[cfg(test)]
mod test {
use super::*;
macro_rules! almost_eq {
($left: expr, $right: expr) => {
let left = $left;
let right = $right;
assert!((left - right).abs() < 1e-6, "{} != {}", left, right);
};
}
#[test]
fn test_vec2() {
use std::f32::consts::TAU;
assert_eq!(Vec2::ZERO.angle(), 0.0);
assert_eq!(Vec2::angled(0.0).angle(), 0.0);
assert_eq!(Vec2::angled(1.0).angle(), 1.0);
assert_eq!(Vec2::X.angle(), 0.0);
assert_eq!(Vec2::Y.angle(), 0.25 * TAU);
assert_eq!(Vec2::RIGHT.angle(), 0.0);
assert_eq!(Vec2::DOWN.angle(), 0.25 * TAU);
almost_eq!(Vec2::LEFT.angle(), 0.50 * TAU);
assert_eq!(Vec2::UP.angle(), -0.25 * TAU);
let mut assignment = vec2(1.0, 2.0);
assignment += vec2(3.0, 4.0);
assert_eq!(assignment, vec2(4.0, 6.0));
let mut assignment = vec2(4.0, 6.0);
assignment -= vec2(1.0, 2.0);
assert_eq!(assignment, vec2(3.0, 4.0));
let mut assignment = vec2(1.0, 2.0);
assignment *= 2.0;
assert_eq!(assignment, vec2(2.0, 4.0));
let mut assignment = vec2(2.0, 4.0);
assignment /= 2.0;
assert_eq!(assignment, vec2(1.0, 2.0));
}
#[test]
fn test_vec2_normalized() {
fn generate_spiral(n: usize, start: Vec2, end: Vec2) -> impl Iterator<Item = Vec2> {
let angle_step = 2.0 * std::f32::consts::PI / n as f32;
let radius_step = (end.length() - start.length()) / n as f32;
(0..n).map(move |i| {
let angle = i as f32 * angle_step;
let radius = start.length() + i as f32 * radius_step;
let x = radius * angle.cos();
let y = radius * angle.sin();
vec2(x, y)
})
}
for v in generate_spiral(40, Vec2::splat(0.1), Vec2::splat(2.0)) {
let vn = v.normalized();
almost_eq!(vn.length(), 1.0);
assert!(vn.is_normalized());
}
}
}