use crate::transform2d::Matrix2x2F;
use crate::vector::{Vector2F, vec2f};
use crate::util;
use pathfinder_simd::default::F32x4;
use std::ops::{Add, Mul, MulAssign, Sub};
#[derive(Clone, Copy, Debug, PartialEq, Default)]
pub struct LineSegment2F(pub F32x4);
impl LineSegment2F {
#[inline]
pub fn new(from: Vector2F, to: Vector2F) -> LineSegment2F {
LineSegment2F(from.0.concat_xy_xy(to.0))
}
#[inline]
pub fn from(self) -> Vector2F {
Vector2F(self.0.xy())
}
#[inline]
pub fn to(self) -> Vector2F {
Vector2F(self.0.zw())
}
#[inline]
pub fn set_from(&mut self, point: Vector2F) {
self.0 = point.0.to_f32x4().concat_xy_zw(self.0)
}
#[inline]
pub fn set_to(&mut self, point: Vector2F) {
self.0 = self.0.concat_xy_xy(point.0.to_f32x4())
}
#[allow(clippy::wrong_self_convention)]
#[inline]
pub fn from_x(self) -> f32 {
self.0[0]
}
#[allow(clippy::wrong_self_convention)]
#[inline]
pub fn from_y(self) -> f32 {
self.0[1]
}
#[inline]
pub fn to_x(self) -> f32 {
self.0[2]
}
#[inline]
pub fn to_y(self) -> f32 {
self.0[3]
}
#[inline]
pub fn set_from_x(&mut self, x: f32) {
self.0[0] = x
}
#[inline]
pub fn set_from_y(&mut self, y: f32) {
self.0[1] = y
}
#[inline]
pub fn set_to_x(&mut self, x: f32) {
self.0[2] = x
}
#[inline]
pub fn set_to_y(&mut self, y: f32) {
self.0[3] = y
}
#[inline]
pub fn split(self, t: f32) -> (LineSegment2F, LineSegment2F) {
debug_assert!(t >= 0.0 && t <= 1.0);
let (from_from, to_to) = (self.0.xyxy(), self.0.zwzw());
let d_d = to_to - from_from;
let mid_mid = from_from + d_d * F32x4::splat(t);
(
LineSegment2F(from_from.concat_xy_xy(mid_mid)),
LineSegment2F(mid_mid.concat_xy_xy(to_to)),
)
}
#[inline]
pub fn split_at_x(self, x: f32) -> (LineSegment2F, LineSegment2F) {
let (min_part, max_part) = self.split(self.solve_t_for_x(x));
if min_part.from_x() < max_part.from_x() {
(min_part, max_part)
} else {
(max_part, min_part)
}
}
#[inline]
pub fn split_at_y(self, y: f32) -> (LineSegment2F, LineSegment2F) {
let (min_part, max_part) = self.split(self.solve_t_for_y(y));
if min_part.from_y() < max_part.to_y() {
(min_part, max_part)
} else {
(max_part, min_part)
}
}
#[inline]
pub fn solve_t_for_x(self, x: f32) -> f32 {
(x - self.from_x()) / (self.to_x() - self.from_x())
}
#[inline]
pub fn solve_t_for_y(self, y: f32) -> f32 {
(y - self.from_y()) / (self.to_y() - self.from_y())
}
#[inline]
pub fn solve_x_for_y(self, y: f32) -> f32 {
util::lerp(self.from_x(), self.to_x(), self.solve_t_for_y(y))
}
#[inline]
pub fn solve_y_for_x(self, x: f32) -> f32 {
util::lerp(self.from_y(), self.to_y(), self.solve_t_for_x(x))
}
#[inline]
pub fn reversed(self) -> LineSegment2F {
LineSegment2F(self.0.zwxy())
}
#[inline]
pub fn upper_point(self) -> Vector2F {
if self.from_y() < self.to_y() {
self.from()
} else {
self.to()
}
}
#[inline]
pub fn min_x(self) -> f32 {
f32::min(self.from_x(), self.to_x())
}
#[inline]
pub fn max_x(self) -> f32 {
f32::max(self.from_x(), self.to_x())
}
#[inline]
pub fn min_y(self) -> f32 {
f32::min(self.from_y(), self.to_y())
}
#[inline]
pub fn max_y(self) -> f32 {
f32::max(self.from_y(), self.to_y())
}
#[inline]
pub fn y_winding(self) -> i32 {
if self.from_y() < self.to_y() {
1
} else {
-1
}
}
#[inline]
pub fn orient(self, y_winding: i32) -> LineSegment2F {
if y_winding >= 0 {
self
} else {
self.reversed()
}
}
#[inline]
pub fn square_length(self) -> f32 {
let (dx, dy) = (self.to_x() - self.from_x(), self.to_y() - self.from_y());
dx * dx + dy * dy
}
#[inline]
pub fn vector(self) -> Vector2F {
self.to() - self.from()
}
pub fn intersection_t(self, other: LineSegment2F) -> Option<f32> {
let p0p1 = self.vector();
let matrix = Matrix2x2F(other.vector().0.concat_xy_xy((-p0p1).0));
if f32::abs(matrix.det()) < EPSILON {
return None;
}
return Some((matrix.inverse() * (self.from() - other.from())).y());
const EPSILON: f32 = 0.0001;
}
#[inline]
pub fn sample(self, t: f32) -> Vector2F {
self.from() + self.vector() * t
}
#[inline]
pub fn midpoint(self) -> Vector2F {
self.sample(0.5)
}
#[inline]
pub fn offset(self, distance: f32) -> LineSegment2F {
if self.is_zero_length() {
self
} else {
self + self.vector().yx().normalize() * vec2f(-distance, distance)
}
}
#[inline]
pub fn is_zero_length(self) -> bool {
self.vector().is_zero()
}
}
impl Add<Vector2F> for LineSegment2F {
type Output = LineSegment2F;
#[inline]
fn add(self, point: Vector2F) -> LineSegment2F {
LineSegment2F(self.0 + point.0.to_f32x4().xyxy())
}
}
impl Sub<Vector2F> for LineSegment2F {
type Output = LineSegment2F;
#[inline]
fn sub(self, point: Vector2F) -> LineSegment2F {
LineSegment2F(self.0 - point.0.to_f32x4().xyxy())
}
}
impl Mul<Vector2F> for LineSegment2F {
type Output = LineSegment2F;
#[inline]
fn mul(self, factors: Vector2F) -> LineSegment2F {
LineSegment2F(self.0 * factors.0.to_f32x4().xyxy())
}
}
impl Mul<f32> for LineSegment2F {
type Output = LineSegment2F;
#[inline]
fn mul(self, factor: f32) -> LineSegment2F {
LineSegment2F(self.0 * F32x4::splat(factor))
}
}
impl MulAssign<Vector2F> for LineSegment2F {
#[inline]
fn mul_assign(&mut self, factors: Vector2F) {
*self = *self * factors
}
}
#[derive(Clone, Copy, Debug, Default)]
#[repr(C)]
pub struct LineSegmentU4 {
pub from: u8,
pub to: u8,
}
#[derive(Clone, Copy, Debug, Default)]
#[repr(C)]
pub struct LineSegmentU8 {
pub from_x: u8,
pub from_y: u8,
pub to_x: u8,
pub to_y: u8,
}