1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
// Copyright 2006 The Android Open Source Project
// Copyright 2020 Yevhenii Reizner
//
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use crate::Point;
use crate::fixed_point::{fdot16, fdot6, FDot16, FDot6};
use crate::math::left_shift;
/// We store 1<<shift in a (signed) byte, so its maximum value is 1<<6 == 64.
///
/// Note that this limits the number of lines we use to approximate a curve.
/// If we need to increase this, we need to store curve_count in something
/// larger than i8.
const MAX_COEFF_SHIFT: i32 = 6;
#[derive(Clone, Debug)]
pub enum Edge {
Line(LineEdge),
Quadratic(QuadraticEdge),
Cubic(CubicEdge),
}
impl Edge {
pub fn as_line(&self) -> &LineEdge {
match self {
Edge::Line(line) => line,
Edge::Quadratic(quad) => &quad.line,
Edge::Cubic(cubic) => &cubic.line,
}
}
pub fn as_line_mut(&mut self) -> &mut LineEdge {
match self {
Edge::Line(line) => line,
Edge::Quadratic(quad) => &mut quad.line,
Edge::Cubic(cubic) => &mut cubic.line,
}
}
}
impl core::ops::Deref for Edge {
type Target = LineEdge;
fn deref(&self) -> &Self::Target {
self.as_line()
}
}
impl core::ops::DerefMut for Edge {
fn deref_mut(&mut self) -> &mut Self::Target {
self.as_line_mut()
}
}
#[derive(Clone, Default, Debug)]
pub struct LineEdge {
// Imitate a linked list.
pub prev: Option<u32>,
pub next: Option<u32>,
pub x: FDot16,
pub dx: FDot16,
pub first_y: i32,
pub last_y: i32,
pub winding: i8, // 1 or -1
}
impl LineEdge {
pub fn new(p0: Point, p1: Point, shift: i32) -> Option<Self> {
let scale = (1 << (shift + 6)) as f32;
let mut x0 = (p0.x * scale) as i32;
let mut y0 = (p0.y * scale) as i32;
let mut x1 = (p1.x * scale) as i32;
let mut y1 = (p1.y * scale) as i32;
let mut winding = 1;
if y0 > y1 {
core::mem::swap(&mut x0, &mut x1);
core::mem::swap(&mut y0, &mut y1);
winding = -1;
}
let top = fdot6::round(y0);
let bottom = fdot6::round(y1);
// are we a zero-height line?
if top == bottom {
return None;
}
let slope = fdot6::div(x1 - x0, y1 - y0);
let dy = compute_dy(top, y0);
Some(LineEdge {
next: None,
prev: None,
x: fdot6::to_fdot16(x0 + fdot16::mul(slope, dy)),
dx: slope,
first_y: top,
last_y: bottom - 1,
winding,
})
}
pub fn is_vertical(&self) -> bool {
self.dx == 0
}
fn update(&mut self, mut x0: FDot16, mut y0: FDot16, mut x1: FDot16, mut y1: FDot16) -> bool {
debug_assert!(self.winding == 1 || self.winding == -1);
y0 >>= 10;
y1 >>= 10;
debug_assert!(y0 <= y1);
let top = fdot6::round(y0);
let bottom = fdot6::round(y1);
// are we a zero-height line?
if top == bottom {
return false;
}
x0 >>= 10;
x1 >>= 10;
let slope = fdot6::div(x1 - x0, y1 - y0);
let dy = compute_dy(top, y0);
self.x = fdot6::to_fdot16(x0 + fdot16::mul(slope, dy));
self.dx = slope;
self.first_y = top;
self.last_y = bottom - 1;
true
}
}
#[derive(Clone, Debug)]
pub struct QuadraticEdge {
pub line: LineEdge,
pub curve_count: i8,
curve_shift: u8, // applied to all dx/ddx/dddx
qx: FDot16,
qy: FDot16,
qdx: FDot16,
qdy: FDot16,
qddx: FDot16,
qddy: FDot16,
q_last_x: FDot16,
q_last_y: FDot16,
}
impl QuadraticEdge {
pub fn new(points: &[Point], shift: i32) -> Option<Self> {
let mut quad = Self::new2(points, shift)?;
if quad.update() {
Some(quad)
} else {
None
}
}
fn new2(points: &[Point], mut shift: i32) -> Option<Self> {
let scale = (1 << (shift + 6)) as f32;
let mut x0 = (points[0].x * scale) as i32;
let mut y0 = (points[0].y * scale) as i32;
let x1 = (points[1].x * scale) as i32;
let y1 = (points[1].y * scale) as i32;
let mut x2 = (points[2].x * scale) as i32;
let mut y2 = (points[2].y * scale) as i32;
let mut winding = 1;
if y0 > y2 {
core::mem::swap(&mut x0, &mut x2);
core::mem::swap(&mut y0, &mut y2);
winding = -1;
}
debug_assert!(y0 <= y1 && y1 <= y2);
let top = fdot6::round(y0);
let bottom = fdot6::round(y2);
// are we a zero-height quad (line)?
if top == bottom {
return None;
}
// compute number of steps needed (1 << shift)
{
let dx = (left_shift(x1, 1) - x0 - x2) >> 2;
let dy = (left_shift(y1, 1) - y0 - y2) >> 2;
// This is a little confusing:
// before this line, shift is the scale up factor for AA;
// after this line, shift is the fCurveShift.
shift = diff_to_shift(dx, dy, shift);
debug_assert!(shift >= 0);
}
// need at least 1 subdivision for our bias trick
if shift == 0 {
shift = 1;
} else if shift > MAX_COEFF_SHIFT {
shift = MAX_COEFF_SHIFT;
}
let curve_count = (1 << shift) as i8;
// We want to reformulate into polynomial form, to make it clear how we
// should forward-difference.
//
// p0 (1 - t)^2 + p1 t(1 - t) + p2 t^2 ==> At^2 + Bt + C
//
// A = p0 - 2p1 + p2
// B = 2(p1 - p0)
// C = p0
//
// Our caller must have constrained our inputs (p0..p2) to all fit into
// 16.16. However, as seen above, we sometimes compute values that can be
// larger (e.g. B = 2*(p1 - p0)). To guard against overflow, we will store
// A and B at 1/2 of their actual value, and just apply a 2x scale during
// application in updateQuadratic(). Hence we store (shift - 1) in
// curve_shift.
let curve_shift = (shift - 1) as u8;
let mut a = fdot6_to_fixed_div2(x0 - x1 - x1 + x2); // 1/2 the real value
let mut b = fdot6::to_fdot16(x1 - x0); // 1/2 the real value
let qx = fdot6::to_fdot16(x0);
let qdx = b + (a >> shift); // biased by shift
let qddx = a >> (shift - 1); // biased by shift
a = fdot6_to_fixed_div2(y0 - y1 - y1 + y2); // 1/2 the real value
b = fdot6::to_fdot16(y1 - y0); // 1/2 the real value
let qy = fdot6::to_fdot16(y0);
let qdy = b + (a >> shift); // biased by shift
let qddy = a >> (shift - 1); // biased by shift
let q_last_x = fdot6::to_fdot16(x2);
let q_last_y = fdot6::to_fdot16(y2);
Some(QuadraticEdge {
line: LineEdge {
next: None,
prev: None,
x: 0,
dx: 0,
first_y: 0,
last_y: 0,
winding,
},
curve_count,
curve_shift,
qx,
qy,
qdx,
qdy,
qddx,
qddy,
q_last_x,
q_last_y,
})
}
pub fn update(&mut self) -> bool {
let mut success;
let mut count = self.curve_count;
let mut oldx = self.qx;
let mut oldy = self.qy;
let mut dx = self.qdx;
let mut dy = self.qdy;
let mut newx;
let mut newy;
let shift = self.curve_shift;
debug_assert!(count > 0);
loop {
count -= 1;
if count > 0 {
newx = oldx + (dx >> shift);
dx += self.qddx;
newy = oldy + (dy >> shift);
dy += self.qddy;
} else {
// last segment
newx = self.q_last_x;
newy = self.q_last_y;
}
success = self.line.update(oldx, oldy, newx, newy);
oldx = newx;
oldy = newy;
if count == 0 || success {
break;
}
}
self.qx = newx;
self.qy = newy;
self.qdx = dx;
self.qdy = dy;
self.curve_count = count;
success
}
}
#[derive(Clone, Debug)]
pub struct CubicEdge {
pub line: LineEdge,
pub curve_count: i8,
curve_shift: u8, // applied to all dx/ddx/dddx except for dshift exception
dshift: u8, // applied to cdx and cdy
cx: FDot16,
cy: FDot16,
cdx: FDot16,
cdy: FDot16,
cddx: FDot16,
cddy: FDot16,
cdddx: FDot16,
cdddy: FDot16,
c_last_x: FDot16,
c_last_y: FDot16,
}
impl CubicEdge {
pub fn new(points: &[Point], shift: i32) -> Option<Self> {
let mut cubic = Self::new2(points, shift, true)?;
if cubic.update() {
Some(cubic)
} else {
None
}
}
fn new2(points: &[Point], mut shift: i32, sort_y: bool) -> Option<Self> {
let scale = (1 << (shift + 6)) as f32;
let mut x0 = (points[0].x * scale) as i32;
let mut y0 = (points[0].y * scale) as i32;
let mut x1 = (points[1].x * scale) as i32;
let mut y1 = (points[1].y * scale) as i32;
let mut x2 = (points[2].x * scale) as i32;
let mut y2 = (points[2].y * scale) as i32;
let mut x3 = (points[3].x * scale) as i32;
let mut y3 = (points[3].y * scale) as i32;
let mut winding = 1;
if sort_y && y0 > y3 {
core::mem::swap(&mut x0, &mut x3);
core::mem::swap(&mut x1, &mut x2);
core::mem::swap(&mut y0, &mut y3);
core::mem::swap(&mut y1, &mut y2);
winding = -1;
}
let top = fdot6::round(y0);
let bot = fdot6::round(y3);
// are we a zero-height cubic (line)?
if sort_y && top == bot {
return None;
}
// compute number of steps needed (1 << shift)
{
// Can't use (center of curve - center of baseline), since center-of-curve
// need not be the max delta from the baseline (it could even be coincident)
// so we try just looking at the two off-curve points
let dx = cubic_delta_from_line(x0, x1, x2, x3);
let dy = cubic_delta_from_line(y0, y1, y2, y3);
// add 1 (by observation)
shift = diff_to_shift(dx, dy, 2) + 1;
}
// need at least 1 subdivision for our bias trick
debug_assert!(shift > 0);
if shift > MAX_COEFF_SHIFT {
shift = MAX_COEFF_SHIFT;
}
// Since our in coming data is initially shifted down by 10 (or 8 in
// antialias). That means the most we can shift up is 8. However, we
// compute coefficients with a 3*, so the safest upshift is really 6
let mut up_shift = 6; // largest safe value
let mut down_shift = shift + up_shift - 10;
if down_shift < 0 {
down_shift = 0;
up_shift = 10 - shift;
}
let curve_count = left_shift(-1, shift) as i8;
let curve_shift = shift as u8;
let dshift = down_shift as u8;
let mut b = fdot6_up_shift(3 * (x1 - x0), up_shift);
let mut c = fdot6_up_shift(3 * (x0 - x1 - x1 + x2), up_shift);
let mut d = fdot6_up_shift(x3 + 3 * (x1 - x2) - x0, up_shift);
let cx = fdot6::to_fdot16(x0);
let cdx = b + (c >> shift) + (d >> (2 * shift)); // biased by shift
let cddx = 2 * c + ((3 * d) >> (shift - 1)); // biased by 2*shift
let cdddx = (3 * d) >> (shift - 1); // biased by 2*shift
b = fdot6_up_shift(3 * (y1 - y0), up_shift);
c = fdot6_up_shift(3 * (y0 - y1 - y1 + y2), up_shift);
d = fdot6_up_shift(y3 + 3 * (y1 - y2) - y0, up_shift);
let cy = fdot6::to_fdot16(y0);
let cdy = b + (c >> shift) + (d >> (2 * shift)); // biased by shift
let cddy = 2 * c + ((3 * d) >> (shift - 1)); // biased by 2*shift
let cdddy = (3 * d) >> (shift - 1); // biased by 2*shift
let c_last_x = fdot6::to_fdot16(x3);
let c_last_y = fdot6::to_fdot16(y3);
Some(CubicEdge {
line: LineEdge {
next: None,
prev: None,
x: 0,
dx: 0,
first_y: 0,
last_y: 0,
winding,
},
curve_count,
curve_shift,
dshift,
cx,
cy,
cdx,
cdy,
cddx,
cddy,
cdddx,
cdddy,
c_last_x,
c_last_y,
})
}
pub fn update(&mut self) -> bool {
let mut success;
let mut count = self.curve_count;
let mut oldx = self.cx;
let mut oldy = self.cy;
let mut newx;
let mut newy;
let ddshift = self.curve_shift;
let dshift = self.dshift;
debug_assert!(count < 0);
loop {
count += 1;
if count < 0 {
newx = oldx + (self.cdx >> dshift);
self.cdx += self.cddx >> ddshift;
self.cddx += self.cdddx;
newy = oldy + (self.cdy >> dshift);
self.cdy += self.cddy >> ddshift;
self.cddy += self.cdddy;
} else {
// last segment
newx = self.c_last_x;
newy = self.c_last_y;
}
// we want to say debug_assert(oldy <= newy), but our finite fixedpoint
// doesn't always achieve that, so we have to explicitly pin it here.
if newy < oldy {
newy = oldy;
}
success = self.line.update(oldx, oldy, newx, newy);
oldx = newx;
oldy = newy;
if count == 0 || success {
break;
}
}
self.cx = newx;
self.cy = newy;
self.curve_count = count;
success
}
}
// This correctly favors the lower-pixel when y0 is on a 1/2 pixel boundary
fn compute_dy(top: FDot6, y0: FDot6) -> FDot6 {
left_shift(top, 6) + 32 - y0
}
fn diff_to_shift(dx: FDot6, dy: FDot6, shift_aa: i32) -> i32 {
// cheap calc of distance from center of p0-p2 to the center of the curve
let mut dist = cheap_distance(dx, dy);
// shift down dist (it is currently in dot6)
// down by 3 should give us 1/8 pixel accuracy (assuming our dist is accurate...)
// this is chosen by heuristic: make it as big as possible (to minimize segments)
// ... but small enough so that our curves still look smooth
// When shift > 0, we're using AA and everything is scaled up so we can
// lower the accuracy.
dist = (dist + (1 << 4)) >> (3 + shift_aa);
// each subdivision (shift value) cuts this dist (error) by 1/4
(32 - dist.leading_zeros() as i32) >> 1
}
fn cheap_distance(mut dx: FDot6, mut dy: FDot6) -> FDot6 {
dx = dx.abs();
dy = dy.abs();
// return max + min/2
if dx > dy {
dx + (dy >> 1)
} else {
dy + (dx >> 1)
}
}
// In LineEdge::new, QuadraticEdge::new, CubicEdge::new, the first thing we do is to convert
// the points into FDot6. This is modulated by the shift parameter, which
// will either be 0, or something like 2 for antialiasing.
//
// In the float case, we want to turn the float into .6 by saying pt * 64,
// or pt * 256 for antialiasing. This is implemented as 1 << (shift + 6).
//
// In the fixed case, we want to turn the fixed into .6 by saying pt >> 10,
// or pt >> 8 for antialiasing. This is implemented as pt >> (10 - shift).
fn fdot6_to_fixed_div2(value: FDot6) -> FDot16 {
// we want to return SkFDot6ToFixed(value >> 1), but we don't want to throw
// away data in value, so just perform a modify up-shift
left_shift(value, 16 - 6 - 1)
}
fn fdot6_up_shift(x: FDot6, up_shift: i32) -> i32 {
debug_assert!((left_shift(x, up_shift) >> up_shift) == x);
left_shift(x, up_shift)
}
// f(1/3) = (8a + 12b + 6c + d) / 27
// f(2/3) = (a + 6b + 12c + 8d) / 27
//
// f(1/3)-b = (8a - 15b + 6c + d) / 27
// f(2/3)-c = (a + 6b - 15c + 8d) / 27
//
// use 16/512 to approximate 1/27
fn cubic_delta_from_line(a: FDot6, b: FDot6, c: FDot6, d: FDot6) -> FDot6 {
// since our parameters may be negative, we don't use <<
let one_third = ((a * 8 - b * 15 + 6 * c + d) * 19) >> 9;
let two_third = ((a + 6 * b - c * 15 + d * 8) * 19) >> 9;
one_third.abs().max(two_third.abs())
}