1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
//! This crate provides foldhash, a fast, non-cryptographic, minimally
//! DoS-resistant hashing algorithm designed for computational uses such as
//! hashmaps, bloom filters, count sketching, etc.
//!
//! When should you **not** use foldhash:
//!
//! - You are afraid of people studying your long-running program's behavior
//!   to reverse engineer its internal random state and using this knowledge to
//!   create many colliding inputs for computational complexity attacks.
//!
//! - You expect foldhash to have a consistent output across versions or
//!   platforms, such as for persistent file formats or communication protocols.
//!   
//! - You are relying on foldhash's properties for any kind of security.
//!   Foldhash is **not appropriate for any cryptographic purpose**.
//!
//! Foldhash has two variants, one optimized for speed which is ideal for data
//! structures such as hash maps and bloom filters, and one optimized for
//! statistical quality which is ideal for algorithms such as
//! [HyperLogLog](https://en.wikipedia.org/wiki/HyperLogLog) and
//! [MinHash](https://en.wikipedia.org/wiki/MinHash).
//!
//! Foldhash can be used in a `#![no_std]` environment by disabling its default
//! `"std"` feature.
//!
//! # Usage
//!
//! The easiest way to use this crate with the standard library [`HashMap`] or
//! [`HashSet`] is to import them from `foldhash` instead, along with the
//! extension traits to make [`HashMap::new`] and [`HashMap::with_capacity`]
//! work out-of-the-box:
//!
//! ```rust
//! use foldhash::{HashMap, HashMapExt};
//!
//! let mut hm = HashMap::new();
//! hm.insert(42, "hello");
//! ```
//!
//! You can also avoid the convenience types and do it manually by initializing
//! a [`RandomState`](fast::RandomState), for example if you are using a different hash map
//! implementation like [`hashbrown`](https://docs.rs/hashbrown/):
//!
//! ```rust
//! use hashbrown::HashMap;
//! use foldhash::fast::RandomState;
//!
//! let mut hm = HashMap::with_hasher(RandomState::default());
//! hm.insert("foo", "bar");
//! ```
//!
//! The above methods are the recommended way to use foldhash, which will
//! automatically generate a randomly generated hasher instance for you. If you
//! absolutely must have determinism you can use [`FixedState`](fast::FixedState)
//! instead, but note that this makes you trivially vulnerable to HashDoS
//! attacks and might lead to quadratic runtime when moving data from one
//! hashmap/set into another:
//!
//! ```rust
//! use std::collections::HashSet;
//! use foldhash::fast::FixedState;
//!
//! let mut hm = HashSet::with_hasher(FixedState::with_seed(42));
//! hm.insert([1, 10, 100]);
//! ```
//!
//! If you rely on statistical properties of the hash for the correctness of
//! your algorithm, such as in [HyperLogLog](https://en.wikipedia.org/wiki/HyperLogLog),
//! it is suggested to use the [`RandomState`](quality::RandomState)
//! or [`FixedState`](quality::FixedState) from the [`quality`] module instead
//! of the [`fast`] module. The latter is optimized purely for speed in hash
//! tables and has known statistical imperfections.
//!
//! Finally, you can also directly use the [`RandomState`](quality::RandomState)
//! or [`FixedState`](quality::FixedState) to manually hash items using the
//! [`BuildHasher`](std::hash::BuildHasher) trait:
//! ```rust
//! use std::hash::BuildHasher;
//! use foldhash::quality::RandomState;
//!
//! let random_state = RandomState::default();
//! let hash = random_state.hash_one("hello world");
//! ```

#![cfg_attr(all(not(test), not(feature = "std")), no_std)]
#![warn(missing_docs)]

use core::hash::Hasher;

#[cfg(feature = "std")]
mod convenience;
mod seed;

#[cfg(feature = "std")]
pub use convenience::*;

// Arbitrary constants with high entropy. Hexadecimal digits of pi were used.
const ARBITRARY0: u64 = 0x243f6a8885a308d3;
const ARBITRARY1: u64 = 0x13198a2e03707344;
const ARBITRARY2: u64 = 0xa4093822299f31d0;
const ARBITRARY3: u64 = 0x082efa98ec4e6c89;
const ARBITRARY4: u64 = 0x452821e638d01377;
const ARBITRARY5: u64 = 0xbe5466cf34e90c6c;
const ARBITRARY6: u64 = 0xc0ac29b7c97c50dd;
const ARBITRARY7: u64 = 0x3f84d5b5b5470917;
const ARBITRARY8: u64 = 0x9216d5d98979fb1b;
const ARBITRARY9: u64 = 0xd1310ba698dfb5ac;

#[inline(always)]
const fn folded_multiply(x: u64, y: u64) -> u64 {
    #[cfg(target_pointer_width = "64")]
    {
        // We compute the full u64 x u64 -> u128 product, this is a single mul
        // instruction on x86-64, one mul plus one mulhi on ARM64.
        let full = (x as u128) * (y as u128);
        let lo = full as u64;
        let hi = (full >> 64) as u64;

        // The middle bits of the full product fluctuate the most with small
        // changes in the input. This is the top bits of lo and the bottom bits
        // of hi. We can thus make the entire output fluctuate with small
        // changes to the input by XOR'ing these two halves.
        lo ^ hi
    }

    #[cfg(target_pointer_width = "32")]
    {
        // u64 x u64 -> u128 product is prohibitively expensive on 32-bit.
        // Decompose into 32-bit parts.
        let lx = x as u32;
        let ly = y as u32;
        let hx = (x >> 32) as u32;
        let hy = (y >> 32) as u32;

        // u32 x u32 -> u64 the low bits of one with the high bits of the other.
        let afull = (lx as u64) * (hy as u64);
        let bfull = (hx as u64) * (ly as u64);

        // Combine, swapping low/high of one of them so the upper bits of the
        // product of one combine with the lower bits of the other.
        afull ^ bfull.rotate_right(32)
    }
}

/// The foldhash implementation optimized for speed.
pub mod fast {
    use super::*;

    pub use seed::fast::{FixedState, RandomState};

    /// A [`Hasher`] instance implementing foldhash, optimized for speed.
    ///
    /// It can't be created directly, see [`RandomState`] or [`FixedState`].
    #[derive(Clone)]
    pub struct FoldHasher {
        accumulator: u64,
        sponge: u128,
        sponge_len: u8,
        fold_seed: u64,
        expand_seed: u64,
        expand_seed2: u64,
        expand_seed3: u64,
    }

    impl FoldHasher {
        #[inline]
        pub(crate) fn with_seed(per_hasher_seed: u64, global_seed: &[u64; 4]) -> FoldHasher {
            FoldHasher {
                accumulator: per_hasher_seed,
                sponge: 0,
                sponge_len: 0,
                fold_seed: global_seed[0],
                expand_seed: global_seed[1],
                expand_seed2: global_seed[2],
                expand_seed3: global_seed[3],
            }
        }

        #[inline(always)]
        fn write_num<T: Into<u128>>(&mut self, x: T) {
            let bits: usize = 8 * core::mem::size_of::<T>();
            if self.sponge_len as usize + bits > 128 {
                let lo = self.sponge as u64;
                let hi = (self.sponge >> 64) as u64;
                self.accumulator = folded_multiply(lo ^ self.accumulator, hi ^ self.fold_seed);
                self.sponge = x.into();
                self.sponge_len = bits as u8;
            } else {
                self.sponge |= x.into() << self.sponge_len;
                self.sponge_len += bits as u8;
            }
        }
    }

    impl Hasher for FoldHasher {
        #[inline(always)]
        fn write(&mut self, bytes: &[u8]) {
            let mut s0 = self.accumulator;
            let mut s1 = self.expand_seed;
            let len = bytes.len();
            if len <= 16 {
                // XOR the input into s0, s1, then multiply and fold.
                if len >= 8 {
                    s0 ^= u64::from_ne_bytes(bytes[0..8].try_into().unwrap());
                    s1 ^= u64::from_ne_bytes(bytes[len - 8..].try_into().unwrap());
                } else if len >= 4 {
                    s0 ^= u32::from_ne_bytes(bytes[0..4].try_into().unwrap()) as u64;
                    s1 ^= u32::from_ne_bytes(bytes[len - 4..].try_into().unwrap()) as u64;
                } else if len > 0 {
                    let lo = bytes[0];
                    let mid = bytes[len / 2];
                    let hi = bytes[len - 1];
                    s0 ^= lo as u64;
                    s1 ^= ((hi as u64) << 8) | mid as u64;
                }
                self.accumulator = folded_multiply(s0, s1);
            } else if len < 256 {
                self.accumulator = hash_bytes_medium(bytes, s0, s1, self.fold_seed);
            } else {
                self.accumulator = hash_bytes_long(
                    bytes,
                    s0,
                    s1,
                    self.expand_seed2,
                    self.expand_seed3,
                    self.fold_seed,
                );
            }
        }

        #[inline(always)]
        fn write_u8(&mut self, i: u8) {
            self.write_num(i);
        }

        #[inline(always)]
        fn write_u16(&mut self, i: u16) {
            self.write_num(i);
        }

        #[inline(always)]
        fn write_u32(&mut self, i: u32) {
            self.write_num(i);
        }

        #[inline(always)]
        fn write_u64(&mut self, i: u64) {
            self.write_num(i);
        }

        #[inline(always)]
        fn write_u128(&mut self, i: u128) {
            let lo = i as u64;
            let hi = (i >> 64) as u64;
            self.accumulator = folded_multiply(lo ^ self.accumulator, hi ^ self.fold_seed);
        }

        #[inline(always)]
        fn write_usize(&mut self, i: usize) {
            // u128 doesn't implement From<usize>.
            #[cfg(target_pointer_width = "32")]
            self.write_num(i as u32);
            #[cfg(target_pointer_width = "64")]
            self.write_num(i as u64);
        }

        #[inline(always)]
        fn finish(&self) -> u64 {
            if self.sponge_len > 0 {
                let lo = self.sponge as u64;
                let hi = (self.sponge >> 64) as u64;
                folded_multiply(lo ^ self.accumulator, hi ^ self.fold_seed)
            } else {
                self.accumulator
            }
        }
    }
}

/// The foldhash implementation optimized for quality.
pub mod quality {
    use super::*;

    pub use seed::quality::{FixedState, RandomState};

    /// A [`Hasher`] instance implementing foldhash, optimized for quality.
    ///
    /// It can't be created directly, see [`RandomState`] or [`FixedState`].
    #[derive(Clone)]
    pub struct FoldHasher {
        pub(crate) inner: fast::FoldHasher,
    }

    impl Hasher for FoldHasher {
        #[inline(always)]
        fn write(&mut self, bytes: &[u8]) {
            self.inner.write(bytes);
        }

        #[inline(always)]
        fn write_u8(&mut self, i: u8) {
            self.inner.write_u8(i);
        }

        #[inline(always)]
        fn write_u16(&mut self, i: u16) {
            self.inner.write_u16(i);
        }

        #[inline(always)]
        fn write_u32(&mut self, i: u32) {
            self.inner.write_u32(i);
        }

        #[inline(always)]
        fn write_u64(&mut self, i: u64) {
            self.inner.write_u64(i);
        }

        #[inline(always)]
        fn write_u128(&mut self, i: u128) {
            self.inner.write_u128(i);
        }

        #[inline(always)]
        fn write_usize(&mut self, i: usize) {
            self.inner.write_usize(i);
        }

        #[inline(always)]
        fn finish(&self) -> u64 {
            folded_multiply(self.inner.finish(), ARBITRARY0)
        }
    }
}

/// Hashes strings >= 16 bytes, has unspecified behavior when bytes.len() < 16.
fn hash_bytes_medium(bytes: &[u8], mut s0: u64, mut s1: u64, fold_seed: u64) -> u64 {
    // Process 32 bytes per iteration, 16 bytes from the start, 16 bytes from
    // the end. On the last iteration these two chunks can overlap, but that is
    // perfectly fine.
    let left_to_right = bytes.chunks_exact(16);
    let mut right_to_left = bytes.rchunks_exact(16);
    for lo in left_to_right {
        let hi = right_to_left.next().unwrap();
        let unconsumed_start = lo.as_ptr();
        let unconsumed_end = hi.as_ptr_range().end;
        if unconsumed_start >= unconsumed_end {
            break;
        }

        let a = u64::from_ne_bytes(lo[0..8].try_into().unwrap());
        let b = u64::from_ne_bytes(lo[8..16].try_into().unwrap());
        let c = u64::from_ne_bytes(hi[0..8].try_into().unwrap());
        let d = u64::from_ne_bytes(hi[8..16].try_into().unwrap());
        s0 = folded_multiply(a ^ s0, c ^ fold_seed);
        s1 = folded_multiply(b ^ s1, d ^ fold_seed);
    }

    s0 ^ s1
}

/// Hashes strings >= 16 bytes, has unspecified behavior when bytes.len() < 16.
#[cold]
#[inline(never)]
fn hash_bytes_long(
    bytes: &[u8],
    mut s0: u64,
    mut s1: u64,
    mut s2: u64,
    mut s3: u64,
    fold_seed: u64,
) -> u64 {
    let chunks = bytes.chunks_exact(64);
    let remainder = chunks.remainder().len();
    for chunk in chunks {
        let a = u64::from_ne_bytes(chunk[0..8].try_into().unwrap());
        let b = u64::from_ne_bytes(chunk[8..16].try_into().unwrap());
        let c = u64::from_ne_bytes(chunk[16..24].try_into().unwrap());
        let d = u64::from_ne_bytes(chunk[24..32].try_into().unwrap());
        let e = u64::from_ne_bytes(chunk[32..40].try_into().unwrap());
        let f = u64::from_ne_bytes(chunk[40..48].try_into().unwrap());
        let g = u64::from_ne_bytes(chunk[48..56].try_into().unwrap());
        let h = u64::from_ne_bytes(chunk[56..64].try_into().unwrap());
        s0 = folded_multiply(a ^ s0, e ^ fold_seed);
        s1 = folded_multiply(b ^ s1, f ^ fold_seed);
        s2 = folded_multiply(c ^ s2, g ^ fold_seed);
        s3 = folded_multiply(d ^ s3, h ^ fold_seed);
    }
    s0 ^= s2;
    s1 ^= s3;

    if remainder > 0 {
        hash_bytes_medium(&bytes[bytes.len() - remainder.max(16)..], s0, s1, fold_seed)
    } else {
        s0 ^ s1
    }
}