1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
use crate::{emath, Color32, TextureId, WHITE_UV};
use emath::{Pos2, Rect, Rot2, TSTransform, Vec2};

/// The 2D vertex type.
///
/// Should be friendly to send to GPU as is.
#[repr(C)]
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq)]
#[cfg(not(feature = "unity"))]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
#[cfg_attr(feature = "bytemuck", derive(bytemuck::Pod, bytemuck::Zeroable))]
pub struct Vertex {
    /// Logical pixel coordinates (points).
    /// (0,0) is the top left corner of the screen.
    pub pos: Pos2, // 64 bit

    /// Normalized texture coordinates.
    /// (0, 0) is the top left corner of the texture.
    /// (1, 1) is the bottom right corner of the texture.
    pub uv: Pos2, // 64 bit

    /// sRGBA with premultiplied alpha
    pub color: Color32, // 32 bit
}

#[repr(C)]
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq)]
#[cfg(feature = "unity")]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
#[cfg_attr(feature = "bytemuck", derive(bytemuck::Pod, bytemuck::Zeroable))]
pub struct Vertex {
    /// Logical pixel coordinates (points).
    /// (0,0) is the top left corner of the screen.
    pub pos: Pos2, // 64 bit

    /// sRGBA with premultiplied alpha
    pub color: Color32, // 32 bit

    /// Normalized texture coordinates.
    /// (0, 0) is the top left corner of the texture.
    /// (1, 1) is the bottom right corner of the texture.
    pub uv: Pos2, // 64 bit
}

/// Textured triangles in two dimensions.
#[derive(Clone, Debug, Default, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub struct Mesh {
    /// Draw as triangles (i.e. the length is always multiple of three).
    ///
    /// If you only support 16-bit indices you can use [`Mesh::split_to_u16`].
    ///
    /// egui is NOT consistent with what winding order it uses, so turn off backface culling.
    pub indices: Vec<u32>,

    /// The vertex data indexed by `indices`.
    pub vertices: Vec<Vertex>,

    /// The texture to use when drawing these triangles.
    pub texture_id: TextureId,
    // TODO(emilk): bounding rectangle
}

impl Mesh {
    pub fn with_texture(texture_id: TextureId) -> Self {
        Self {
            texture_id,
            ..Default::default()
        }
    }

    /// Restore to default state, but without freeing memory.
    pub fn clear(&mut self) {
        self.indices.clear();
        self.vertices.clear();
        self.vertices = Default::default();
    }

    /// Returns the amount of memory used by the vertices and indices.
    pub fn bytes_used(&self) -> usize {
        std::mem::size_of::<Self>()
            + self.vertices.len() * std::mem::size_of::<Vertex>()
            + self.indices.len() * std::mem::size_of::<u32>()
    }

    /// Are all indices within the bounds of the contained vertices?
    pub fn is_valid(&self) -> bool {
        profiling::function_scope!();

        if let Ok(n) = u32::try_from(self.vertices.len()) {
            self.indices.iter().all(|&i| i < n)
        } else {
            false
        }
    }

    pub fn is_empty(&self) -> bool {
        self.indices.is_empty() && self.vertices.is_empty()
    }

    /// Calculate a bounding rectangle.
    pub fn calc_bounds(&self) -> Rect {
        let mut bounds = Rect::NOTHING;
        for v in &self.vertices {
            bounds.extend_with(v.pos);
        }
        bounds
    }

    /// Append all the indices and vertices of `other` to `self`.
    ///
    /// Panics when `other` mesh has a different texture.
    pub fn append(&mut self, other: Self) {
        profiling::function_scope!();
        debug_assert!(other.is_valid());

        if self.is_empty() {
            *self = other;
        } else {
            self.append_ref(&other);
        }
    }

    /// Append all the indices and vertices of `other` to `self` without
    /// taking ownership.
    ///
    /// Panics when `other` mesh has a different texture.
    pub fn append_ref(&mut self, other: &Self) {
        debug_assert!(other.is_valid());

        if self.is_empty() {
            self.texture_id = other.texture_id;
        } else {
            assert_eq!(
                self.texture_id, other.texture_id,
                "Can't merge Mesh using different textures"
            );
        }

        let index_offset = self.vertices.len() as u32;
        self.indices
            .extend(other.indices.iter().map(|index| index + index_offset));
        self.vertices.extend(other.vertices.iter());
    }

    /// Add a colored vertex.
    ///
    /// Panics when the mesh has assigned a texture.
    #[inline(always)]
    pub fn colored_vertex(&mut self, pos: Pos2, color: Color32) {
        debug_assert!(self.texture_id == TextureId::default());
        self.vertices.push(Vertex {
            pos,
            uv: WHITE_UV,
            color,
        });
    }

    /// Add a triangle.
    #[inline(always)]
    pub fn add_triangle(&mut self, a: u32, b: u32, c: u32) {
        self.indices.push(a);
        self.indices.push(b);
        self.indices.push(c);
    }

    /// Make room for this many additional triangles (will reserve 3x as many indices).
    /// See also `reserve_vertices`.
    #[inline(always)]
    pub fn reserve_triangles(&mut self, additional_triangles: usize) {
        self.indices.reserve(3 * additional_triangles);
    }

    /// Make room for this many additional vertices.
    /// See also `reserve_triangles`.
    #[inline(always)]
    pub fn reserve_vertices(&mut self, additional: usize) {
        self.vertices.reserve(additional);
    }

    /// Rectangle with a texture and color.
    pub fn add_rect_with_uv(&mut self, rect: Rect, uv: Rect, color: Color32) {
        #![allow(clippy::identity_op)]

        let idx = self.vertices.len() as u32;
        self.add_triangle(idx + 0, idx + 1, idx + 2);
        self.add_triangle(idx + 2, idx + 1, idx + 3);

        self.vertices.push(Vertex {
            pos: rect.left_top(),
            uv: uv.left_top(),
            color,
        });
        self.vertices.push(Vertex {
            pos: rect.right_top(),
            uv: uv.right_top(),
            color,
        });
        self.vertices.push(Vertex {
            pos: rect.left_bottom(),
            uv: uv.left_bottom(),
            color,
        });
        self.vertices.push(Vertex {
            pos: rect.right_bottom(),
            uv: uv.right_bottom(),
            color,
        });
    }

    /// Uniformly colored rectangle.
    #[inline(always)]
    pub fn add_colored_rect(&mut self, rect: Rect, color: Color32) {
        debug_assert!(self.texture_id == TextureId::default());
        self.add_rect_with_uv(rect, [WHITE_UV, WHITE_UV].into(), color);
    }

    /// This is for platforms that only support 16-bit index buffers.
    ///
    /// Splits this mesh into many smaller meshes (if needed)
    /// where the smaller meshes have 16-bit indices.
    pub fn split_to_u16(self) -> Vec<Mesh16> {
        debug_assert!(self.is_valid());

        const MAX_SIZE: u32 = u16::MAX as u32;

        if self.vertices.len() <= MAX_SIZE as usize {
            // Common-case optimization:
            return vec![Mesh16 {
                indices: self.indices.iter().map(|&i| i as u16).collect(),
                vertices: self.vertices,
                texture_id: self.texture_id,
            }];
        }

        let mut output = vec![];
        let mut index_cursor = 0;

        while index_cursor < self.indices.len() {
            let span_start = index_cursor;
            let mut min_vindex = self.indices[index_cursor];
            let mut max_vindex = self.indices[index_cursor];

            while index_cursor < self.indices.len() {
                let (mut new_min, mut new_max) = (min_vindex, max_vindex);
                for i in 0..3 {
                    let idx = self.indices[index_cursor + i];
                    new_min = new_min.min(idx);
                    new_max = new_max.max(idx);
                }

                let new_span_size = new_max - new_min + 1; // plus one, because it is an inclusive range
                if new_span_size <= MAX_SIZE {
                    // Triangle fits
                    min_vindex = new_min;
                    max_vindex = new_max;
                    index_cursor += 3;
                } else {
                    break;
                }
            }

            assert!(
                index_cursor > span_start,
                "One triangle spanned more than {MAX_SIZE} vertices"
            );

            let mesh = Mesh16 {
                indices: self.indices[span_start..index_cursor]
                    .iter()
                    .map(|vi| u16::try_from(vi - min_vindex).unwrap())
                    .collect(),
                vertices: self.vertices[(min_vindex as usize)..=(max_vindex as usize)].to_vec(),
                texture_id: self.texture_id,
            };
            debug_assert!(mesh.is_valid());
            output.push(mesh);
        }
        output
    }

    /// Translate location by this much, in-place
    pub fn translate(&mut self, delta: Vec2) {
        for v in &mut self.vertices {
            v.pos += delta;
        }
    }

    /// Transform the mesh in-place with the given transform.
    pub fn transform(&mut self, transform: TSTransform) {
        for v in &mut self.vertices {
            v.pos = transform * v.pos;
        }
    }

    /// Rotate by some angle about an origin, in-place.
    ///
    /// Origin is a position in screen space.
    pub fn rotate(&mut self, rot: Rot2, origin: Pos2) {
        for v in &mut self.vertices {
            v.pos = origin + rot * (v.pos - origin);
        }
    }
}

// ----------------------------------------------------------------------------

/// A version of [`Mesh`] that uses 16-bit indices.
///
/// This is produced by [`Mesh::split_to_u16`] and is meant to be used for legacy render backends.
pub struct Mesh16 {
    /// Draw as triangles (i.e. the length is always multiple of three).
    ///
    /// egui is NOT consistent with what winding order it uses, so turn off backface culling.
    pub indices: Vec<u16>,

    /// The vertex data indexed by `indices`.
    pub vertices: Vec<Vertex>,

    /// The texture to use when drawing these triangles.
    pub texture_id: TextureId,
}

impl Mesh16 {
    /// Are all indices within the bounds of the contained vertices?
    pub fn is_valid(&self) -> bool {
        if let Ok(n) = u16::try_from(self.vertices.len()) {
            self.indices.iter().all(|&i| i < n)
        } else {
            false
        }
    }
}