1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
#[cfg(all(feature = "nightly_aarch64_neon", target_arch = "aarch64"))]
use core::arch::aarch64::*;

#[cfg(all(feature = "nightly_aarch64_neon", target_arch = "aarch64"))]
#[target_feature(enable = "neon")]
unsafe fn idct8(data: &mut [int16x8_t; 8]) {
    // The fixed-point constants here are obtained by taking the fractional part of the constants
    // from the non-SIMD implementation and scaling them up by 1<<15. This is because
    // vqrdmulhq_n_s16(a, b) is effectively equivalent to (a*b)>>15 (except for possibly some
    // slight differences in rounding).

    // The code here is effectively equivalent to the calls to "kernel" in idct.rs, except that it
    // doesn't apply any further scaling and fixed point constants have a different precision.

    let p2 = data[2];
    let p3 = data[6];
    let p1 = vqrdmulhq_n_s16(vqaddq_s16(p2, p3), 17734); // 0.5411961
    let t2 = vqsubq_s16(
        vqsubq_s16(p1, p3),
        vqrdmulhq_n_s16(p3, 27779), // 0.847759065
    );
    let t3 = vqaddq_s16(p1, vqrdmulhq_n_s16(p2, 25079)); // 0.765366865

    let p2 = data[0];
    let p3 = data[4];
    let t0 = vqaddq_s16(p2, p3);
    let t1 = vqsubq_s16(p2, p3);

    let x0 = vqaddq_s16(t0, t3);
    let x3 = vqsubq_s16(t0, t3);
    let x1 = vqaddq_s16(t1, t2);
    let x2 = vqsubq_s16(t1, t2);

    let t0 = data[7];
    let t1 = data[5];
    let t2 = data[3];
    let t3 = data[1];

    let p3 = vqaddq_s16(t0, t2);
    let p4 = vqaddq_s16(t1, t3);
    let p1 = vqaddq_s16(t0, t3);
    let p2 = vqaddq_s16(t1, t2);
    let p5 = vqaddq_s16(p3, p4);
    let p5 = vqaddq_s16(p5, vqrdmulhq_n_s16(p5, 5763)); // 0.175875602

    let t0 = vqrdmulhq_n_s16(t0, 9786); // 0.298631336
    let t1 = vqaddq_s16(
        vqaddq_s16(t1, t1),
        vqrdmulhq_n_s16(t1, 1741), // 0.053119869
    );
    let t2 = vqaddq_s16(
        vqaddq_s16(t2, vqaddq_s16(t2, t2)),
        vqrdmulhq_n_s16(t2, 2383), // 0.072711026
    );
    let t3 = vqaddq_s16(t3, vqrdmulhq_n_s16(t3, 16427)); // 0.501321110

    let p1 = vqsubq_s16(p5, vqrdmulhq_n_s16(p1, 29490)); // 0.899976223
    let p2 = vqsubq_s16(
        vqsubq_s16(vqsubq_s16(p5, p2), p2),
        vqrdmulhq_n_s16(p2, 18446), // 0.562915447
    );

    let p3 = vqsubq_s16(
        vqrdmulhq_n_s16(p3, -31509), // -0.961570560
        p3,
    );
    let p4 = vqrdmulhq_n_s16(p4, -12785); // -0.390180644

    let t3 = vqaddq_s16(vqaddq_s16(p1, p4), t3);
    let t2 = vqaddq_s16(vqaddq_s16(p2, p3), t2);
    let t1 = vqaddq_s16(vqaddq_s16(p2, p4), t1);
    let t0 = vqaddq_s16(vqaddq_s16(p1, p3), t0);

    data[0] = vqaddq_s16(x0, t3);
    data[7] = vqsubq_s16(x0, t3);
    data[1] = vqaddq_s16(x1, t2);
    data[6] = vqsubq_s16(x1, t2);
    data[2] = vqaddq_s16(x2, t1);
    data[5] = vqsubq_s16(x2, t1);
    data[3] = vqaddq_s16(x3, t0);
    data[4] = vqsubq_s16(x3, t0);
}

#[cfg(all(feature = "nightly_aarch64_neon", target_arch = "aarch64"))]
#[target_feature(enable = "neon")]
unsafe fn transpose8(data: &mut [int16x8_t; 8]) {
    // Use NEON's 2x2 matrix transposes (vtrn) to do the transposition in each 4x4 block, then
    // combine the 4x4 blocks.
    let a01 = vtrnq_s16(data[0], data[1]);
    let a23 = vtrnq_s16(data[2], data[3]);

    let four0 = vtrnq_s32(vreinterpretq_s32_s16(a01.0), vreinterpretq_s32_s16(a23.0));
    let four1 = vtrnq_s32(vreinterpretq_s32_s16(a01.1), vreinterpretq_s32_s16(a23.1));

    let a45 = vtrnq_s16(data[4], data[5]);
    let a67 = vtrnq_s16(data[6], data[7]);

    let four2 = vtrnq_s32(vreinterpretq_s32_s16(a45.0), vreinterpretq_s32_s16(a67.0));
    let four3 = vtrnq_s32(vreinterpretq_s32_s16(a45.1), vreinterpretq_s32_s16(a67.1));

    data[0] = vreinterpretq_s16_s32(vcombine_s32(vget_low_s32(four0.0), vget_low_s32(four2.0)));
    data[1] = vreinterpretq_s16_s32(vcombine_s32(vget_low_s32(four1.0), vget_low_s32(four3.0)));
    data[2] = vreinterpretq_s16_s32(vcombine_s32(vget_low_s32(four0.1), vget_low_s32(four2.1)));
    data[3] = vreinterpretq_s16_s32(vcombine_s32(vget_low_s32(four1.1), vget_low_s32(four3.1)));
    data[4] = vreinterpretq_s16_s32(vcombine_s32(vget_high_s32(four0.0), vget_high_s32(four2.0)));
    data[5] = vreinterpretq_s16_s32(vcombine_s32(vget_high_s32(four1.0), vget_high_s32(four3.0)));
    data[6] = vreinterpretq_s16_s32(vcombine_s32(vget_high_s32(four0.1), vget_high_s32(four2.1)));
    data[7] = vreinterpretq_s16_s32(vcombine_s32(vget_high_s32(four1.1), vget_high_s32(four3.1)));
}

#[cfg(all(feature = "nightly_aarch64_neon", target_arch = "aarch64"))]
#[target_feature(enable = "neon")]
pub unsafe fn dequantize_and_idct_block_8x8(
    coefficients: &[i16; 64],
    quantization_table: &[u16; 64],
    output_linestride: usize,
    output: &mut [u8],
) {
    // The loop below will write to positions [output_linestride * i, output_linestride * i + 8)
    // for 0<=i<8. Thus, the last accessed position is at an offset of output_linestrade * 7 + 7,
    // and if that position is in-bounds, so are all other accesses.
    assert!(
        output.len()
            > output_linestride
                .checked_mul(7)
                .unwrap()
                .checked_add(7)
                .unwrap()
    );

    const SHIFT: i32 = 3;

    // Read the DCT coefficients, scale them up and dequantize them.
    let mut data = [vdupq_n_s16(0); 8];
    for i in 0..8 {
        data[i] = vshlq_n_s16(
            vmulq_s16(
                vld1q_s16(coefficients.as_ptr().wrapping_add(i * 8)),
                vreinterpretq_s16_u16(vld1q_u16(quantization_table.as_ptr().wrapping_add(i * 8))),
            ),
            SHIFT,
        );
    }

    // Usual column IDCT - transpose - column IDCT - transpose approach.
    idct8(&mut data);
    transpose8(&mut data);
    idct8(&mut data);
    transpose8(&mut data);

    for i in 0..8 {
        // The two passes of the IDCT algorithm give us a factor of 8, so the shift here is
        // increased by 3.
        // As values will be stored in a u8, they need to be 128-centered and not 0-centered.
        // We add 128 with the appropriate shift for that purpose.
        const OFFSET: i16 = 128 << (SHIFT + 3);
        // We want rounding right shift, so we should add (1/2) << (SHIFT+3) before shifting.
        const ROUNDING_BIAS: i16 = (1 << (SHIFT + 3)) >> 1;

        let data_with_offset = vqaddq_s16(data[i], vdupq_n_s16(OFFSET + ROUNDING_BIAS));

        vst1_u8(
            output.as_mut_ptr().wrapping_add(output_linestride * i),
            vqshrun_n_s16(data_with_offset, SHIFT + 3),
        );
    }
}

#[cfg(all(feature = "nightly_aarch64_neon", target_arch = "aarch64"))]
#[target_feature(enable = "neon")]
pub unsafe fn color_convert_line_ycbcr(y: &[u8], cb: &[u8], cr: &[u8], output: &mut [u8]) -> usize {
    assert!(output.len() % 3 == 0);
    let num = output.len() / 3;
    assert!(num <= y.len());
    assert!(num <= cb.len());
    assert!(num <= cr.len());
    let num_vecs = num / 8;

    for i in 0..num_vecs {
        const SHIFT: i32 = 6;
        // Load.
        let y = vld1_u8(y.as_ptr().wrapping_add(i * 8));
        let cb = vld1_u8(cb.as_ptr().wrapping_add(i * 8));
        let cr = vld1_u8(cr.as_ptr().wrapping_add(i * 8));

        // Convert to 16 bit and shift.
        let y = vreinterpretq_s16_u16(vshll_n_u8(y, SHIFT));
        let cb = vreinterpretq_s16_u16(vshll_n_u8(cb, SHIFT));
        let cr = vreinterpretq_s16_u16(vshll_n_u8(cr, SHIFT));

        // Add offsets
        let y = vqaddq_s16(y, vdupq_n_s16((1 << SHIFT) >> 1));
        let c128 = vdupq_n_s16(128 << SHIFT);
        let cb = vqsubq_s16(cb, c128);
        let cr = vqsubq_s16(cr, c128);

        // Compute cr * 1.402, cb * 0.34414, cr * 0.71414, cb * 1.772
        let cr_140200 = vqaddq_s16(vqrdmulhq_n_s16(cr, 13173), cr);
        let cb_034414 = vqrdmulhq_n_s16(cb, 11276);
        let cr_071414 = vqrdmulhq_n_s16(cr, 23401);
        let cb_177200 = vqaddq_s16(vqrdmulhq_n_s16(cb, 25297), cb);

        // Last conversion step.
        let r = vqaddq_s16(y, cr_140200);
        let g = vqsubq_s16(y, vqaddq_s16(cb_034414, cr_071414));
        let b = vqaddq_s16(y, cb_177200);

        // Shift back and convert to u8.
        let r = vqshrun_n_s16(r, SHIFT);
        let g = vqshrun_n_s16(g, SHIFT);
        let b = vqshrun_n_s16(b, SHIFT);

        // Shuffle + store.
        vst3_u8(
            output.as_mut_ptr().wrapping_add(24 * i),
            uint8x8x3_t(r, g, b),
        );
    }

    num_vecs * 8
}