1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
//! One- and two-dimensional alignment ([`Align::Center`], [`Align2::LEFT_TOP`] etc).

use crate::{pos2, vec2, Pos2, Rangef, Rect, Vec2};

/// left/center/right or top/center/bottom alignment for e.g. anchors and layouts.
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub enum Align {
    /// Left or top.
    #[default]
    Min,

    /// Horizontal or vertical center.
    Center,

    /// Right or bottom.
    Max,
}

impl Align {
    /// Convenience for [`Self::Min`]
    pub const LEFT: Self = Self::Min;

    /// Convenience for [`Self::Max`]
    pub const RIGHT: Self = Self::Max;

    /// Convenience for [`Self::Min`]
    pub const TOP: Self = Self::Min;

    /// Convenience for [`Self::Max`]
    pub const BOTTOM: Self = Self::Max;

    /// Convert `Min => 0.0`, `Center => 0.5` or `Max => 1.0`.
    #[inline(always)]
    pub fn to_factor(self) -> f32 {
        match self {
            Self::Min => 0.0,
            Self::Center => 0.5,
            Self::Max => 1.0,
        }
    }

    /// Convert `Min => -1.0`, `Center => 0.0` or `Max => 1.0`.
    #[inline(always)]
    pub fn to_sign(self) -> f32 {
        match self {
            Self::Min => -1.0,
            Self::Center => 0.0,
            Self::Max => 1.0,
        }
    }

    /// Returns a range of given size within a specified range.
    ///
    /// If the requested `size` is bigger than the size of `range`, then the returned
    /// range will not fit into the available `range`. The extra space will be allocated
    /// from:
    ///
    /// |Align |Side        |
    /// |------|------------|
    /// |Min   |right (end) |
    /// |Center|both        |
    /// |Max   |left (start)|
    ///
    /// # Examples
    /// ```
    /// use std::f32::{INFINITY, NEG_INFINITY};
    /// use emath::Align::*;
    ///
    /// // The size is smaller than a range
    /// assert_eq!(Min   .align_size_within_range(2.0, 10.0..=20.0), 10.0..=12.0);
    /// assert_eq!(Center.align_size_within_range(2.0, 10.0..=20.0), 14.0..=16.0);
    /// assert_eq!(Max   .align_size_within_range(2.0, 10.0..=20.0), 18.0..=20.0);
    ///
    /// // The size is bigger than a range
    /// assert_eq!(Min   .align_size_within_range(20.0, 10.0..=20.0), 10.0..=30.0);
    /// assert_eq!(Center.align_size_within_range(20.0, 10.0..=20.0),  5.0..=25.0);
    /// assert_eq!(Max   .align_size_within_range(20.0, 10.0..=20.0),  0.0..=20.0);
    ///
    /// // The size is infinity, but range is finite - a special case of a previous example
    /// assert_eq!(Min   .align_size_within_range(INFINITY, 10.0..=20.0),         10.0..=INFINITY);
    /// assert_eq!(Center.align_size_within_range(INFINITY, 10.0..=20.0), NEG_INFINITY..=INFINITY);
    /// assert_eq!(Max   .align_size_within_range(INFINITY, 10.0..=20.0), NEG_INFINITY..=20.0);
    /// ```
    ///
    /// The infinity-sized ranges can produce a surprising results, if the size is also infinity,
    /// use such ranges with carefully!
    ///
    /// ```
    /// use std::f32::{INFINITY, NEG_INFINITY};
    /// use emath::Align::*;
    ///
    /// // Allocating a size aligned for infinity bound will lead to empty ranges!
    /// assert_eq!(Min   .align_size_within_range(2.0, 10.0..=INFINITY),     10.0..=12.0);
    /// assert_eq!(Center.align_size_within_range(2.0, 10.0..=INFINITY), INFINITY..=INFINITY);// (!)
    /// assert_eq!(Max   .align_size_within_range(2.0, 10.0..=INFINITY), INFINITY..=INFINITY);// (!)
    ///
    /// assert_eq!(Min   .align_size_within_range(2.0, NEG_INFINITY..=20.0), NEG_INFINITY..=NEG_INFINITY);// (!)
    /// assert_eq!(Center.align_size_within_range(2.0, NEG_INFINITY..=20.0), NEG_INFINITY..=NEG_INFINITY);// (!)
    /// assert_eq!(Max   .align_size_within_range(2.0, NEG_INFINITY..=20.0),         18.0..=20.0);
    ///
    ///
    /// // The infinity size will always return the given range if it has at least one infinity bound
    /// assert_eq!(Min   .align_size_within_range(INFINITY, 10.0..=INFINITY), 10.0..=INFINITY);
    /// assert_eq!(Center.align_size_within_range(INFINITY, 10.0..=INFINITY), 10.0..=INFINITY);
    /// assert_eq!(Max   .align_size_within_range(INFINITY, 10.0..=INFINITY), 10.0..=INFINITY);
    ///
    /// assert_eq!(Min   .align_size_within_range(INFINITY, NEG_INFINITY..=20.0), NEG_INFINITY..=20.0);
    /// assert_eq!(Center.align_size_within_range(INFINITY, NEG_INFINITY..=20.0), NEG_INFINITY..=20.0);
    /// assert_eq!(Max   .align_size_within_range(INFINITY, NEG_INFINITY..=20.0), NEG_INFINITY..=20.0);
    /// ```
    #[inline]
    pub fn align_size_within_range(self, size: f32, range: impl Into<Rangef>) -> Rangef {
        let range = range.into();
        let Rangef { min, max } = range;

        if max - min == f32::INFINITY && size == f32::INFINITY {
            return range;
        }

        match self {
            Self::Min => Rangef::new(min, min + size),
            Self::Center => {
                if size == f32::INFINITY {
                    Rangef::new(f32::NEG_INFINITY, f32::INFINITY)
                } else {
                    let left = (min + max) / 2.0 - size / 2.0;
                    Rangef::new(left, left + size)
                }
            }
            Self::Max => Rangef::new(max - size, max),
        }
    }
}

// ----------------------------------------------------------------------------

/// Two-dimension alignment, e.g. [`Align2::LEFT_TOP`].
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub struct Align2(pub [Align; 2]);

impl Align2 {
    pub const LEFT_BOTTOM: Self = Self([Align::Min, Align::Max]);
    pub const LEFT_CENTER: Self = Self([Align::Min, Align::Center]);
    pub const LEFT_TOP: Self = Self([Align::Min, Align::Min]);
    pub const CENTER_BOTTOM: Self = Self([Align::Center, Align::Max]);
    pub const CENTER_CENTER: Self = Self([Align::Center, Align::Center]);
    pub const CENTER_TOP: Self = Self([Align::Center, Align::Min]);
    pub const RIGHT_BOTTOM: Self = Self([Align::Max, Align::Max]);
    pub const RIGHT_CENTER: Self = Self([Align::Max, Align::Center]);
    pub const RIGHT_TOP: Self = Self([Align::Max, Align::Min]);
}

impl Align2 {
    /// Returns an alignment by the X (horizontal) axis
    #[inline(always)]
    pub fn x(self) -> Align {
        self.0[0]
    }

    /// Returns an alignment by the Y (vertical) axis
    #[inline(always)]
    pub fn y(self) -> Align {
        self.0[1]
    }

    /// -1, 0, or +1 for each axis
    pub fn to_sign(self) -> Vec2 {
        vec2(self.x().to_sign(), self.y().to_sign())
    }

    /// Used e.g. to anchor a piece of text to a part of the rectangle.
    /// Give a position within the rect, specified by the aligns
    pub fn anchor_rect(self, rect: Rect) -> Rect {
        let x = match self.x() {
            Align::Min => rect.left(),
            Align::Center => rect.left() - 0.5 * rect.width(),
            Align::Max => rect.left() - rect.width(),
        };
        let y = match self.y() {
            Align::Min => rect.top(),
            Align::Center => rect.top() - 0.5 * rect.height(),
            Align::Max => rect.top() - rect.height(),
        };
        Rect::from_min_size(pos2(x, y), rect.size())
    }

    /// Use this anchor to position something around `pos`,
    /// e.g. [`Self::RIGHT_TOP`] means the right-top of the rect
    /// will end up at `pos`.
    pub fn anchor_size(self, pos: Pos2, size: Vec2) -> Rect {
        let x = match self.x() {
            Align::Min => pos.x,
            Align::Center => pos.x - 0.5 * size.x,
            Align::Max => pos.x - size.x,
        };
        let y = match self.y() {
            Align::Min => pos.y,
            Align::Center => pos.y - 0.5 * size.y,
            Align::Max => pos.y - size.y,
        };
        Rect::from_min_size(pos2(x, y), size)
    }

    /// e.g. center a size within a given frame
    pub fn align_size_within_rect(self, size: Vec2, frame: Rect) -> Rect {
        let x_range = self.x().align_size_within_range(size.x, frame.x_range());
        let y_range = self.y().align_size_within_range(size.y, frame.y_range());
        Rect::from_x_y_ranges(x_range, y_range)
    }

    /// Returns the point on the rect's frame or in the center of a rect according
    /// to the alignments of this object.
    ///
    /// ```text
    /// (*)-----------+------(*)------+-----------(*)--> X
    ///  |            |               |            |
    ///  |  Min, Min  |  Center, Min  |  Max, Min  |
    ///  |            |               |            |
    ///  +------------+---------------+------------+
    ///  |            |               |            |
    /// (*)Min, Center|Center(*)Center|Max, Center(*)
    ///  |            |               |            |
    ///  +------------+---------------+------------+
    ///  |            |               |            |
    ///  |  Min, Max  | Center, Max   |  Max, Max  |
    ///  |            |               |            |
    /// (*)-----------+------(*)------+-----------(*)
    ///  |
    ///  Y
    /// ```
    pub fn pos_in_rect(self, frame: &Rect) -> Pos2 {
        let x = match self.x() {
            Align::Min => frame.left(),
            Align::Center => frame.center().x,
            Align::Max => frame.right(),
        };
        let y = match self.y() {
            Align::Min => frame.top(),
            Align::Center => frame.center().y,
            Align::Max => frame.bottom(),
        };

        pos2(x, y)
    }
}

impl std::ops::Index<usize> for Align2 {
    type Output = Align;

    #[inline(always)]
    fn index(&self, index: usize) -> &Align {
        &self.0[index]
    }
}

impl std::ops::IndexMut<usize> for Align2 {
    #[inline(always)]
    fn index_mut(&mut self, index: usize) -> &mut Align {
        &mut self.0[index]
    }
}

/// Allocates a rectangle of the specified `size` inside the `frame` rectangle
/// around of its center.
///
/// If `size` is bigger than the `frame`s size the returned rect will bounce out
/// of the `frame`.
pub fn center_size_in_rect(size: Vec2, frame: Rect) -> Rect {
    Align2::CENTER_CENTER.align_size_within_rect(size, frame)
}