1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
/* origin: FreeBSD /usr/src/lib/msun/src/s_sin.c */
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */

use super::{get_high_word, k_cos, k_sin, rem_pio2};

/// Both the sine and cosine of `x` (f64).
///
/// `x` is specified in radians and the return value is (sin(x), cos(x)).
#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
pub fn sincos(x: f64) -> (f64, f64) {
    let s: f64;
    let c: f64;
    let mut ix: u32;

    ix = get_high_word(x);
    ix &= 0x7fffffff;

    /* |x| ~< pi/4 */
    if ix <= 0x3fe921fb {
        /* if |x| < 2**-27 * sqrt(2) */
        if ix < 0x3e46a09e {
            /* raise inexact if x!=0 and underflow if subnormal */
            let x1p120 = f64::from_bits(0x4770000000000000); // 0x1p120 == 2^120
            if ix < 0x00100000 {
                force_eval!(x / x1p120);
            } else {
                force_eval!(x + x1p120);
            }
            return (x, 1.0);
        }
        return (k_sin(x, 0.0, 0), k_cos(x, 0.0));
    }

    /* sincos(Inf or NaN) is NaN */
    if ix >= 0x7ff00000 {
        let rv = x - x;
        return (rv, rv);
    }

    /* argument reduction needed */
    let (n, y0, y1) = rem_pio2(x);
    s = k_sin(y0, y1, 1);
    c = k_cos(y0, y1);
    match n & 3 {
        0 => (s, c),
        1 => (c, -s),
        2 => (-s, -c),
        3 => (-c, s),
        #[cfg(debug_assertions)]
        _ => unreachable!(),
        #[cfg(not(debug_assertions))]
        _ => (0.0, 1.0),
    }
}

// These tests are based on those from sincosf.rs
#[cfg(test)]
mod tests {
    use super::sincos;

    const TOLERANCE: f64 = 1e-6;

    #[test]
    fn with_pi() {
        let (s, c) = sincos(core::f64::consts::PI);
        assert!(
            (s - 0.0).abs() < TOLERANCE,
            "|{} - {}| = {} >= {}",
            s,
            0.0,
            (s - 0.0).abs(),
            TOLERANCE
        );
        assert!(
            (c + 1.0).abs() < TOLERANCE,
            "|{} + {}| = {} >= {}",
            c,
            1.0,
            (s + 1.0).abs(),
            TOLERANCE
        );
    }

    #[test]
    fn rotational_symmetry() {
        use core::f64::consts::PI;
        const N: usize = 24;
        for n in 0..N {
            let theta = 2. * PI * (n as f64) / (N as f64);
            let (s, c) = sincos(theta);
            let (s_plus, c_plus) = sincos(theta + 2. * PI);
            let (s_minus, c_minus) = sincos(theta - 2. * PI);

            assert!(
                (s - s_plus).abs() < TOLERANCE,
                "|{} - {}| = {} >= {}",
                s,
                s_plus,
                (s - s_plus).abs(),
                TOLERANCE
            );
            assert!(
                (s - s_minus).abs() < TOLERANCE,
                "|{} - {}| = {} >= {}",
                s,
                s_minus,
                (s - s_minus).abs(),
                TOLERANCE
            );
            assert!(
                (c - c_plus).abs() < TOLERANCE,
                "|{} - {}| = {} >= {}",
                c,
                c_plus,
                (c - c_plus).abs(),
                TOLERANCE
            );
            assert!(
                (c - c_minus).abs() < TOLERANCE,
                "|{} - {}| = {} >= {}",
                c,
                c_minus,
                (c - c_minus).abs(),
                TOLERANCE
            );
        }
    }
}