1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
/* origin: FreeBSD /usr/src/lib/msun/src/s_sin.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
use super::{get_high_word, k_cos, k_sin, rem_pio2};
/// Both the sine and cosine of `x` (f64).
///
/// `x` is specified in radians and the return value is (sin(x), cos(x)).
#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
pub fn sincos(x: f64) -> (f64, f64) {
let s: f64;
let c: f64;
let mut ix: u32;
ix = get_high_word(x);
ix &= 0x7fffffff;
/* |x| ~< pi/4 */
if ix <= 0x3fe921fb {
/* if |x| < 2**-27 * sqrt(2) */
if ix < 0x3e46a09e {
/* raise inexact if x!=0 and underflow if subnormal */
let x1p120 = f64::from_bits(0x4770000000000000); // 0x1p120 == 2^120
if ix < 0x00100000 {
force_eval!(x / x1p120);
} else {
force_eval!(x + x1p120);
}
return (x, 1.0);
}
return (k_sin(x, 0.0, 0), k_cos(x, 0.0));
}
/* sincos(Inf or NaN) is NaN */
if ix >= 0x7ff00000 {
let rv = x - x;
return (rv, rv);
}
/* argument reduction needed */
let (n, y0, y1) = rem_pio2(x);
s = k_sin(y0, y1, 1);
c = k_cos(y0, y1);
match n & 3 {
0 => (s, c),
1 => (c, -s),
2 => (-s, -c),
3 => (-c, s),
#[cfg(debug_assertions)]
_ => unreachable!(),
#[cfg(not(debug_assertions))]
_ => (0.0, 1.0),
}
}
// These tests are based on those from sincosf.rs
#[cfg(test)]
mod tests {
use super::sincos;
const TOLERANCE: f64 = 1e-6;
#[test]
fn with_pi() {
let (s, c) = sincos(core::f64::consts::PI);
assert!(
(s - 0.0).abs() < TOLERANCE,
"|{} - {}| = {} >= {}",
s,
0.0,
(s - 0.0).abs(),
TOLERANCE
);
assert!(
(c + 1.0).abs() < TOLERANCE,
"|{} + {}| = {} >= {}",
c,
1.0,
(s + 1.0).abs(),
TOLERANCE
);
}
#[test]
fn rotational_symmetry() {
use core::f64::consts::PI;
const N: usize = 24;
for n in 0..N {
let theta = 2. * PI * (n as f64) / (N as f64);
let (s, c) = sincos(theta);
let (s_plus, c_plus) = sincos(theta + 2. * PI);
let (s_minus, c_minus) = sincos(theta - 2. * PI);
assert!(
(s - s_plus).abs() < TOLERANCE,
"|{} - {}| = {} >= {}",
s,
s_plus,
(s - s_plus).abs(),
TOLERANCE
);
assert!(
(s - s_minus).abs() < TOLERANCE,
"|{} - {}| = {} >= {}",
s,
s_minus,
(s - s_minus).abs(),
TOLERANCE
);
assert!(
(c - c_plus).abs() < TOLERANCE,
"|{} - {}| = {} >= {}",
c,
c_plus,
(c - c_plus).abs(),
TOLERANCE
);
assert!(
(c - c_minus).abs() < TOLERANCE,
"|{} - {}| = {} >= {}",
c,
c_minus,
(c - c_minus).abs(),
TOLERANCE
);
}
}
}