1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
use std::cmp;
use super::*;
// Friendly neighborhood axis-aligned rectangle
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct AaRect {
x: i64,
y: i64,
width: i64,
height: i64,
}
impl AaRect {
pub fn new((x, y): (i32, i32), (width, height): (u32, u32)) -> Self {
let (x, y) = (x as i64, y as i64);
let (width, height) = (width as i64, height as i64);
AaRect { x, y, width, height }
}
pub fn contains_point(&self, x: i64, y: i64) -> bool {
x >= self.x && x <= self.x + self.width && y >= self.y && y <= self.y + self.height
}
pub fn get_overlapping_area(&self, other: &Self) -> i64 {
let x_overlap = cmp::max(
0,
cmp::min(self.x + self.width, other.x + other.width) - cmp::max(self.x, other.x),
);
let y_overlap = cmp::max(
0,
cmp::min(self.y + self.height, other.y + other.height) - cmp::max(self.y, other.y),
);
x_overlap * y_overlap
}
}
#[derive(Debug, Clone)]
pub struct FrameExtents {
pub left: u32,
pub right: u32,
pub top: u32,
pub bottom: u32,
}
impl FrameExtents {
pub fn new(left: u32, right: u32, top: u32, bottom: u32) -> Self {
FrameExtents { left, right, top, bottom }
}
pub fn from_border(border: u32) -> Self {
Self::new(border, border, border, border)
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum FrameExtentsHeuristicPath {
Supported,
UnsupportedNested,
UnsupportedBordered,
}
#[derive(Debug, Clone)]
pub struct FrameExtentsHeuristic {
pub frame_extents: FrameExtents,
pub heuristic_path: FrameExtentsHeuristicPath,
}
impl FrameExtentsHeuristic {
pub fn inner_pos_to_outer(&self, x: i32, y: i32) -> (i32, i32) {
use self::FrameExtentsHeuristicPath::*;
if self.heuristic_path != UnsupportedBordered {
(x - self.frame_extents.left as i32, y - self.frame_extents.top as i32)
} else {
(x, y)
}
}
pub fn inner_size_to_outer(&self, width: u32, height: u32) -> (u32, u32) {
(
width.saturating_add(
self.frame_extents.left.saturating_add(self.frame_extents.right) as _
),
height.saturating_add(
self.frame_extents.top.saturating_add(self.frame_extents.bottom) as _
),
)
}
}
impl XConnection {
// This is adequate for inner_position
pub fn translate_coords(
&self,
window: xproto::Window,
root: xproto::Window,
) -> Result<xproto::TranslateCoordinatesReply, X11Error> {
self.xcb_connection().translate_coordinates(window, root, 0, 0)?.reply().map_err(Into::into)
}
// This is adequate for inner_size
pub fn get_geometry(
&self,
window: xproto::Window,
) -> Result<xproto::GetGeometryReply, X11Error> {
self.xcb_connection().get_geometry(window)?.reply().map_err(Into::into)
}
fn get_frame_extents(&self, window: xproto::Window) -> Option<FrameExtents> {
let atoms = self.atoms();
let extents_atom = atoms[_NET_FRAME_EXTENTS];
if !hint_is_supported(extents_atom) {
return None;
}
// Of the WMs tested, xmonad, i3, dwm, IceWM (1.3.x and earlier), and blackbox don't
// support this. As this is part of EWMH (Extended Window Manager Hints), it's likely to
// be unsupported by many smaller WMs.
let extents: Option<Vec<u32>> = self
.get_property(window, extents_atom, xproto::Atom::from(xproto::AtomEnum::CARDINAL))
.ok();
extents.and_then(|extents| {
if extents.len() >= 4 {
Some(FrameExtents {
left: extents[0],
right: extents[1],
top: extents[2],
bottom: extents[3],
})
} else {
None
}
})
}
pub fn is_top_level(&self, window: xproto::Window, root: xproto::Window) -> Option<bool> {
let atoms = self.atoms();
let client_list_atom = atoms[_NET_CLIENT_LIST];
if !hint_is_supported(client_list_atom) {
return None;
}
let client_list: Option<Vec<xproto::Window>> = self
.get_property(root, client_list_atom, xproto::Atom::from(xproto::AtomEnum::WINDOW))
.ok();
client_list.map(|client_list| client_list.contains(&(window as xproto::Window)))
}
fn get_parent_window(&self, window: xproto::Window) -> Result<xproto::Window, X11Error> {
let parent = self.xcb_connection().query_tree(window)?.reply()?.parent;
Ok(parent)
}
fn climb_hierarchy(
&self,
window: xproto::Window,
root: xproto::Window,
) -> Result<xproto::Window, X11Error> {
let mut outer_window = window;
loop {
let candidate = self.get_parent_window(outer_window)?;
if candidate == root {
break;
}
outer_window = candidate;
}
Ok(outer_window)
}
pub fn get_frame_extents_heuristic(
&self,
window: xproto::Window,
root: xproto::Window,
) -> FrameExtentsHeuristic {
use self::FrameExtentsHeuristicPath::*;
// Position relative to root window.
// With rare exceptions, this is the position of a nested window. Cases where the window
// isn't nested are outlined in the comments throughout this function, but in addition to
// that, fullscreen windows often aren't nested.
let (inner_y_rel_root, child) = {
let coords = self
.translate_coords(window, root)
.expect("Failed to translate window coordinates");
(coords.dst_y, coords.child)
};
let (width, height, border) = {
let inner_geometry =
self.get_geometry(window).expect("Failed to get inner window geometry");
(inner_geometry.width, inner_geometry.height, inner_geometry.border_width)
};
// The first condition is only false for un-nested windows, but isn't always false for
// un-nested windows. Mutter/Muffin/Budgie and Marco present a mysterious discrepancy:
// when y is on the range [0, 2] and if the window has been unfocused since being
// undecorated (or was undecorated upon construction), the first condition is true,
// requiring us to rely on the second condition.
let nested = !(window == child || self.is_top_level(child, root) == Some(true));
// Hopefully the WM supports EWMH, allowing us to get exact info on the window frames.
if let Some(mut frame_extents) = self.get_frame_extents(window) {
// Mutter/Muffin/Budgie and Marco preserve their decorated frame extents when
// decorations are disabled, but since the window becomes un-nested, it's easy to
// catch.
if !nested {
frame_extents = FrameExtents::new(0, 0, 0, 0);
}
// The difference between the nested window's position and the outermost window's
// position is equivalent to the frame size. In most scenarios, this is equivalent to
// manually climbing the hierarchy as is done in the case below. Here's a list of
// known discrepancies:
// * Mutter/Muffin/Budgie gives decorated windows a margin of 9px (only 7px on top) in
// addition to a 1px semi-transparent border. The margin can be easily observed by
// using a screenshot tool to get a screenshot of a selected window, and is presumably
// used for drawing drop shadows. Getting window geometry information via
// hierarchy-climbing results in this margin being included in both the position and
// outer size, so a window positioned at (0, 0) would be reported as having a position
// (-10, -8).
// * Compiz has a drop shadow margin just like Mutter/Muffin/Budgie, though it's 10px on
// all sides, and there's no additional border.
// * Enlightenment otherwise gets a y position equivalent to inner_y_rel_root. Without
// decorations, there's no difference. This is presumably related to Enlightenment's
// fairly unique concept of window position; it interprets positions given to
// XMoveWindow as a client area position rather than a position of the overall window.
FrameExtentsHeuristic { frame_extents, heuristic_path: Supported }
} else if nested {
// If the position value we have is for a nested window used as the client area, we'll
// just climb up the hierarchy and get the geometry of the outermost window we're
// nested in.
let outer_window =
self.climb_hierarchy(window, root).expect("Failed to climb window hierarchy");
let (outer_y, outer_width, outer_height) = {
let outer_geometry =
self.get_geometry(outer_window).expect("Failed to get outer window geometry");
(outer_geometry.y, outer_geometry.width, outer_geometry.height)
};
// Since we have the geometry of the outermost window and the geometry of the client
// area, we can figure out what's in between.
let diff_x = outer_width.saturating_sub(width) as u32;
let diff_y = outer_height.saturating_sub(height) as u32;
let offset_y = inner_y_rel_root.saturating_sub(outer_y) as u32;
let left = diff_x / 2;
let right = left;
let top = offset_y;
let bottom = diff_y.saturating_sub(offset_y);
let frame_extents = FrameExtents::new(left, right, top, bottom);
FrameExtentsHeuristic { frame_extents, heuristic_path: UnsupportedNested }
} else {
// This is the case for xmonad and dwm, AKA the only WMs tested that supplied a
// border value. This is convenient, since we can use it to get an accurate frame.
let frame_extents = FrameExtents::from_border(border.into());
FrameExtentsHeuristic { frame_extents, heuristic_path: UnsupportedBordered }
}
}
}