1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
// Implementation derived from `weak` in Rust's
// library/std/src/sys/unix/weak.rs at revision
// fd0cb0cdc21dd9c06025277d772108f8d42cb25f.
//
// Ideally we should update to a newer version which doesn't need `dlsym`,
// however that depends on the `extern_weak` feature which is currently
// unstable.
#![cfg_attr(linux_raw, allow(unsafe_code))]
//! Support for "weak linkage" to symbols on Unix
//!
//! Some I/O operations we do in libstd require newer versions of OSes but we
//! need to maintain binary compatibility with older releases for now. In order
//! to use the new functionality when available we use this module for
//! detection.
//!
//! One option to use here is weak linkage, but that is unfortunately only
//! really workable on Linux. Hence, use dlsym to get the symbol value at
//! runtime. This is also done for compatibility with older versions of glibc,
//! and to avoid creating dependencies on `GLIBC_PRIVATE` symbols. It assumes
//! that we've been dynamically linked to the library the symbol comes from,
//! but that is currently always the case for things like libpthread/libc.
//!
//! A long time ago this used weak linkage for the `__pthread_get_minstack`
//! symbol, but that caused Debian to detect an unnecessarily strict versioned
//! dependency on libc6 (#23628).
// There are a variety of `#[cfg]`s controlling which targets are involved in
// each instance of `weak!` and `syscall!`. Rather than trying to unify all of
// that, we'll just allow that some unix targets don't use this module at all.
#![allow(dead_code, unused_macros)]
#![allow(clippy::doc_markdown)]
use crate::ffi::CStr;
use core::ffi::c_void;
use core::ptr::null_mut;
use core::sync::atomic::{self, AtomicPtr, Ordering};
use core::{marker, mem};
const NULL: *mut c_void = null_mut();
const INVALID: *mut c_void = 1 as *mut c_void;
macro_rules! weak {
($vis:vis fn $name:ident($($t:ty),*) -> $ret:ty) => (
#[allow(non_upper_case_globals)]
$vis static $name: $crate::weak::Weak<unsafe extern fn($($t),*) -> $ret> =
$crate::weak::Weak::new(concat!(stringify!($name), '\0'));
)
}
pub(crate) struct Weak<F> {
name: &'static str,
addr: AtomicPtr<c_void>,
_marker: marker::PhantomData<F>,
}
impl<F> Weak<F> {
pub(crate) const fn new(name: &'static str) -> Self {
Self {
name,
addr: AtomicPtr::new(INVALID),
_marker: marker::PhantomData,
}
}
pub(crate) fn get(&self) -> Option<F> {
assert_eq!(mem::size_of::<F>(), mem::size_of::<usize>());
unsafe {
// Relaxed is fine here because we fence before reading through the
// pointer (see the comment below).
match self.addr.load(Ordering::Relaxed) {
INVALID => self.initialize(),
NULL => None,
addr => {
let func = mem::transmute_copy::<*mut c_void, F>(&addr);
// The caller is presumably going to read through this value
// (by calling the function we've dlsymed). This means we'd
// need to have loaded it with at least C11's consume
// ordering in order to be guaranteed that the data we read
// from the pointer isn't from before the pointer was
// stored. Rust has no equivalent to memory_order_consume,
// so we use an acquire fence (sorry, ARM).
//
// Now, in practice this likely isn't needed even on CPUs
// where relaxed and consume mean different things. The
// symbols we're loading are probably present (or not) at
// init, and even if they aren't the runtime dynamic loader
// is extremely likely have sufficient barriers internally
// (possibly implicitly, for example the ones provided by
// invoking `mprotect`).
//
// That said, none of that's *guaranteed*, and so we fence.
atomic::fence(Ordering::Acquire);
Some(func)
}
}
}
}
// Cold because it should only happen during first-time initialization.
#[cold]
unsafe fn initialize(&self) -> Option<F> {
let val = fetch(self.name);
// This synchronizes with the acquire fence in `get`.
self.addr.store(val, Ordering::Release);
match val {
NULL => None,
addr => Some(mem::transmute_copy::<*mut c_void, F>(&addr)),
}
}
}
// To avoid having the `linux_raw` backend depend on the libc crate, just
// declare the few things we need in a module called `libc` so that `fetch`
// uses it.
#[cfg(linux_raw)]
mod libc {
use core::ptr;
use linux_raw_sys::ctypes::{c_char, c_void};
#[cfg(all(target_os = "android", target_pointer_width = "32"))]
pub(super) const RTLD_DEFAULT: *mut c_void = -1isize as *mut c_void;
#[cfg(not(all(target_os = "android", target_pointer_width = "32")))]
pub(super) const RTLD_DEFAULT: *mut c_void = ptr::null_mut();
extern "C" {
pub(super) fn dlsym(handle: *mut c_void, symbol: *const c_char) -> *mut c_void;
}
#[test]
fn test_abi() {
assert_eq!(self::RTLD_DEFAULT, ::libc::RTLD_DEFAULT);
}
}
unsafe fn fetch(name: &str) -> *mut c_void {
let name = match CStr::from_bytes_with_nul(name.as_bytes()) {
Ok(c_str) => c_str,
Err(..) => return null_mut(),
};
libc::dlsym(libc::RTLD_DEFAULT, name.as_ptr().cast())
}
#[cfg(not(linux_kernel))]
macro_rules! syscall {
(fn $name:ident($($arg_name:ident: $t:ty),*) via $_sys_name:ident -> $ret:ty) => (
unsafe fn $name($($arg_name: $t),*) -> $ret {
weak! { fn $name($($t),*) -> $ret }
if let Some(fun) = $name.get() {
fun($($arg_name),*)
} else {
libc_errno::set_errno(libc_errno::Errno(libc::ENOSYS));
-1
}
}
)
}
#[cfg(linux_kernel)]
macro_rules! syscall {
(fn $name:ident($($arg_name:ident: $t:ty),*) via $sys_name:ident -> $ret:ty) => (
unsafe fn $name($($arg_name:$t),*) -> $ret {
// This looks like a hack, but `concat_idents` only accepts idents
// (not paths).
use libc::*;
#[allow(dead_code)]
trait AsSyscallArg {
type SyscallArgType;
fn into_syscall_arg(self) -> Self::SyscallArgType;
}
// Pass pointer types as pointers, to preserve provenance.
impl<T> AsSyscallArg for *mut T {
type SyscallArgType = *mut T;
fn into_syscall_arg(self) -> Self::SyscallArgType { self }
}
impl<T> AsSyscallArg for *const T {
type SyscallArgType = *const T;
fn into_syscall_arg(self) -> Self::SyscallArgType { self }
}
// Pass `BorrowedFd` values as the integer value.
impl AsSyscallArg for $crate::fd::BorrowedFd<'_> {
type SyscallArgType = ::libc::c_int;
fn into_syscall_arg(self) -> Self::SyscallArgType {
$crate::fd::AsRawFd::as_raw_fd(&self) as _
}
}
// Coerce integer values into `c_long`.
impl AsSyscallArg for i8 {
type SyscallArgType = ::libc::c_int;
fn into_syscall_arg(self) -> Self::SyscallArgType { self.into() }
}
impl AsSyscallArg for u8 {
type SyscallArgType = ::libc::c_int;
fn into_syscall_arg(self) -> Self::SyscallArgType { self.into() }
}
impl AsSyscallArg for i16 {
type SyscallArgType = ::libc::c_int;
fn into_syscall_arg(self) -> Self::SyscallArgType { self.into() }
}
impl AsSyscallArg for u16 {
type SyscallArgType = ::libc::c_int;
fn into_syscall_arg(self) -> Self::SyscallArgType { self.into() }
}
impl AsSyscallArg for i32 {
type SyscallArgType = ::libc::c_int;
fn into_syscall_arg(self) -> Self::SyscallArgType { self }
}
impl AsSyscallArg for u32 {
type SyscallArgType = ::libc::c_uint;
fn into_syscall_arg(self) -> Self::SyscallArgType { self }
}
impl AsSyscallArg for usize {
type SyscallArgType = ::libc::c_ulong;
fn into_syscall_arg(self) -> Self::SyscallArgType { self as _ }
}
// On 64-bit platforms, also coerce `i64` and `u64` since `c_long`
// is 64-bit and can hold those values.
#[cfg(target_pointer_width = "64")]
impl AsSyscallArg for i64 {
type SyscallArgType = ::libc::c_long;
fn into_syscall_arg(self) -> Self::SyscallArgType { self }
}
#[cfg(target_pointer_width = "64")]
impl AsSyscallArg for u64 {
type SyscallArgType = ::libc::c_ulong;
fn into_syscall_arg(self) -> Self::SyscallArgType { self }
}
// `concat_idents` is [unstable], so we take an extra `sys_name`
// parameter and have our users do the concat for us for now.
//
// [unstable]: https://github.com/rust-lang/rust/issues/29599
/*
syscall(
concat_idents!(SYS_, $name),
$($arg_name.into_syscall_arg()),*
) as $ret
*/
syscall($sys_name, $($arg_name.into_syscall_arg()),*) as $ret
}
)
}
macro_rules! weakcall {
($vis:vis fn $name:ident($($arg_name:ident: $t:ty),*) -> $ret:ty) => (
$vis unsafe fn $name($($arg_name: $t),*) -> $ret {
weak! { fn $name($($t),*) -> $ret }
// Use a weak symbol from libc when possible, allowing `LD_PRELOAD`
// interposition, but if it's not found just fail.
if let Some(fun) = $name.get() {
fun($($arg_name),*)
} else {
libc_errno::set_errno(libc_errno::Errno(libc::ENOSYS));
-1
}
}
)
}
/// A combination of `weakcall` and `syscall`. Use the libc function if it's
/// available, and fall back to `libc::syscall` otherwise.
macro_rules! weak_or_syscall {
($vis:vis fn $name:ident($($arg_name:ident: $t:ty),*) via $sys_name:ident -> $ret:ty) => (
$vis unsafe fn $name($($arg_name: $t),*) -> $ret {
weak! { fn $name($($t),*) -> $ret }
// Use a weak symbol from libc when possible, allowing `LD_PRELOAD`
// interposition, but if it's not found just fail.
if let Some(fun) = $name.get() {
fun($($arg_name),*)
} else {
syscall! { fn $name($($arg_name: $t),*) via $sys_name -> $ret }
$name($($arg_name),*)
}
}
)
}