1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
mod and;
mod and_then;
mod boxed;
mod map;
mod map_err;
mod or;
mod or_else;
mod recover;
pub(crate) mod service;
mod then;
mod unify;
mod untuple_one;
mod wrap;
use std::future::Future;
use futures_util::{future, TryFuture, TryFutureExt};
pub(crate) use crate::generic::{one, Combine, Either, Func, One, Tuple};
use crate::reject::{CombineRejection, IsReject, Rejection};
use crate::route::{self, Route};
pub(crate) use self::and::And;
use self::and_then::AndThen;
pub use self::boxed::BoxedFilter;
pub(crate) use self::map::Map;
pub(crate) use self::map_err::MapErr;
pub(crate) use self::or::Or;
use self::or_else::OrElse;
use self::recover::Recover;
use self::then::Then;
use self::unify::Unify;
use self::untuple_one::UntupleOne;
pub use self::wrap::wrap_fn;
pub(crate) use self::wrap::{Wrap, WrapSealed};
// A crate-private base trait, allowing the actual `filter` method to change
// signatures without it being a breaking change.
pub trait FilterBase {
type Extract: Tuple; // + Send;
type Error: IsReject;
type Future: Future<Output = Result<Self::Extract, Self::Error>> + Send;
fn filter(&self, internal: Internal) -> Self::Future;
fn map_err<F, E>(self, _internal: Internal, fun: F) -> MapErr<Self, F>
where
Self: Sized,
F: Fn(Self::Error) -> E + Clone,
E: ::std::fmt::Debug + Send,
{
MapErr {
filter: self,
callback: fun,
}
}
}
// A crate-private argument to prevent users from calling methods on
// the `FilterBase` trait.
//
// For instance, this innocent user code could otherwise call `filter`:
//
// ```
// async fn with_filter<F: Filter>(f: F) -> Result<F::Extract, F::Error> {
// f.filter().await
// }
// ```
#[allow(missing_debug_implementations)]
pub struct Internal;
/// Composable request filters.
///
/// A `Filter` can optionally extract some data from a request, combine
/// it with others, mutate it, and return back some value as a reply. The
/// power of `Filter`s come from being able to isolate small subsets, and then
/// chain and reuse them in various parts of your app.
///
/// # Extracting Tuples
///
/// You may notice that several of these filters extract some tuple, often
/// times a tuple of just 1 item! Why?
///
/// If a filter extracts a `(String,)`, that simply means that it
/// extracts a `String`. If you were to `map` the filter, the argument type
/// would be exactly that, just a `String`.
///
/// What is it? It's just some type magic that allows for automatic combining
/// and flattening of tuples. Without it, combining two filters together with
/// `and`, where one extracted `()`, and another `String`, would mean the
/// `map` would be given a single argument of `((), String,)`, which is just
/// no fun.
pub trait Filter: FilterBase {
/// Composes a new `Filter` that requires both this and the other to filter a request.
///
/// Additionally, this will join together the extracted values of both
/// filters, so that `map` and `and_then` receive them as separate arguments.
///
/// If a `Filter` extracts nothing (so, `()`), combining with any other
/// filter will simply discard the `()`. If a `Filter` extracts one or
/// more items, combining will mean it extracts the values of itself
/// combined with the other.
///
/// # Example
///
/// ```
/// use warp::Filter;
///
/// // Match `/hello/:name`...
/// warp::path("hello")
/// .and(warp::path::param::<String>());
/// ```
fn and<F>(self, other: F) -> And<Self, F>
where
Self: Sized,
<Self::Extract as Tuple>::HList: Combine<<F::Extract as Tuple>::HList>,
F: Filter + Clone,
F::Error: CombineRejection<Self::Error>,
{
And {
first: self,
second: other,
}
}
/// Composes a new `Filter` of either this or the other filter.
///
/// # Example
///
/// ```
/// use std::net::SocketAddr;
/// use warp::Filter;
///
/// // Match either `/:u32` or `/:socketaddr`
/// warp::path::param::<u32>()
/// .or(warp::path::param::<SocketAddr>());
/// ```
fn or<F>(self, other: F) -> Or<Self, F>
where
Self: Filter<Error = Rejection> + Sized,
F: Filter,
F::Error: CombineRejection<Self::Error>,
{
Or {
first: self,
second: other,
}
}
/// Composes this `Filter` with a function receiving the extracted value.
///
///
/// # Example
///
/// ```
/// use warp::Filter;
///
/// // Map `/:id`
/// warp::path::param().map(|id: u64| {
/// format!("Hello #{}", id)
/// });
/// ```
///
/// # `Func`
///
/// The generic `Func` trait is implemented for any function that receives
/// the same arguments as this `Filter` extracts. In practice, this
/// shouldn't ever bother you, and simply makes things feel more natural.
///
/// For example, if three `Filter`s were combined together, suppose one
/// extracts nothing (so `()`), and the other two extract two integers,
/// a function that accepts exactly two integer arguments is allowed.
/// Specifically, any `Fn(u32, u32)`.
///
/// Without `Product` and `Func`, this would be a lot messier. First of
/// all, the `()`s couldn't be discarded, and the tuples would be nested.
/// So, instead, you'd need to pass an `Fn(((), (u32, u32)))`. That's just
/// a single argument. Bleck!
///
/// Even worse, the tuples would shuffle the types around depending on
/// the exact invocation of `and`s. So, `unit.and(int).and(int)` would
/// result in a different extracted type from `unit.and(int.and(int))`,
/// or from `int.and(unit).and(int)`. If you changed around the order
/// of filters, while still having them be semantically equivalent, you'd
/// need to update all your `map`s as well.
///
/// `Product`, `HList`, and `Func` do all the heavy work so that none of
/// this is a bother to you. What's more, the types are enforced at
/// compile-time, and tuple flattening is optimized away to nothing by
/// LLVM.
fn map<F>(self, fun: F) -> Map<Self, F>
where
Self: Sized,
F: Func<Self::Extract> + Clone,
{
Map {
filter: self,
callback: fun,
}
}
/// Composes this `Filter` with an async function receiving
/// the extracted value.
///
/// The function should return some `Future` type.
///
/// # Example
///
/// ```
/// use warp::Filter;
///
/// // Map `/:id`
/// warp::path::param().then(|id: u64| async move {
/// format!("Hello #{}", id)
/// });
/// ```
fn then<F>(self, fun: F) -> Then<Self, F>
where
Self: Sized,
F: Func<Self::Extract> + Clone,
F::Output: Future + Send,
{
Then {
filter: self,
callback: fun,
}
}
/// Composes this `Filter` with a fallible async function receiving
/// the extracted value.
///
/// The function should return some `TryFuture` type.
///
/// The `Error` type of the return `Future` needs be a `Rejection`, which
/// means most futures will need to have their error mapped into one.
///
/// Rejections are meant to say "this filter didn't accept the request,
/// maybe another can". So for application-level errors, consider using
/// [`Filter::then`] instead.
///
/// # Example
///
/// ```
/// use warp::Filter;
///
/// // Validate after `/:id`
/// warp::path::param().and_then(|id: u64| async move {
/// if id != 0 {
/// Ok(format!("Hello #{}", id))
/// } else {
/// Err(warp::reject::not_found())
/// }
/// });
/// ```
fn and_then<F>(self, fun: F) -> AndThen<Self, F>
where
Self: Sized,
F: Func<Self::Extract> + Clone,
F::Output: TryFuture + Send,
<F::Output as TryFuture>::Error: CombineRejection<Self::Error>,
{
AndThen {
filter: self,
callback: fun,
}
}
/// Compose this `Filter` with a function receiving an error.
///
/// The function should return some `TryFuture` type yielding the
/// same item and error types.
fn or_else<F>(self, fun: F) -> OrElse<Self, F>
where
Self: Filter<Error = Rejection> + Sized,
F: Func<Rejection>,
F::Output: TryFuture<Ok = Self::Extract> + Send,
<F::Output as TryFuture>::Error: IsReject,
{
OrElse {
filter: self,
callback: fun,
}
}
/// Compose this `Filter` with a function receiving an error and
/// returning a *new* type, instead of the *same* type.
///
/// This is useful for "customizing" rejections into new response types.
/// See also the [rejections example][ex].
///
/// [ex]: https://github.com/seanmonstar/warp/blob/master/examples/rejections.rs
fn recover<F>(self, fun: F) -> Recover<Self, F>
where
Self: Filter<Error = Rejection> + Sized,
F: Func<Rejection>,
F::Output: TryFuture + Send,
<F::Output as TryFuture>::Error: IsReject,
{
Recover {
filter: self,
callback: fun,
}
}
/// Unifies the extracted value of `Filter`s composed with `or`.
///
/// When a `Filter` extracts some `Either<T, T>`, where both sides
/// are the same type, this combinator can be used to grab the
/// inner value, regardless of which side of `Either` it was. This
/// is useful for values that could be extracted from multiple parts
/// of a request, and the exact place isn't important.
///
/// # Example
///
/// ```rust
/// use std::net::SocketAddr;
/// use warp::Filter;
///
/// let client_ip = warp::header("x-real-ip")
/// .or(warp::header("x-forwarded-for"))
/// .unify()
/// .map(|ip: SocketAddr| {
/// // Get the IP from either header,
/// // and unify into the inner type.
/// });
/// ```
fn unify<T>(self) -> Unify<Self>
where
Self: Filter<Extract = (Either<T, T>,)> + Sized,
T: Tuple,
{
Unify { filter: self }
}
/// Convenience method to remove one layer of tupling.
///
/// This is useful for when things like `map` don't return a new value,
/// but just `()`, since warp will wrap it up into a `((),)`.
///
/// # Example
///
/// ```
/// use warp::Filter;
///
/// let route = warp::path::param()
/// .map(|num: u64| {
/// println!("just logging: {}", num);
/// // returning "nothing"
/// })
/// .untuple_one()
/// .map(|| {
/// println!("the ((),) was removed");
/// warp::reply()
/// });
/// ```
///
/// ```
/// use warp::Filter;
///
/// let route = warp::any()
/// .map(|| {
/// // wanting to return a tuple
/// (true, 33)
/// })
/// .untuple_one()
/// .map(|is_enabled: bool, count: i32| {
/// println!("untupled: ({}, {})", is_enabled, count);
/// });
/// ```
fn untuple_one<T>(self) -> UntupleOne<Self>
where
Self: Filter<Extract = (T,)> + Sized,
T: Tuple,
{
UntupleOne { filter: self }
}
/// Wraps the current filter with some wrapper.
///
/// The wrapper may do some preparation work before starting this filter,
/// and may do post-processing after the filter completes.
///
/// # Example
///
/// ```
/// use warp::Filter;
///
/// let route = warp::any()
/// .map(warp::reply);
///
/// // Wrap the route with a log wrapper.
/// let route = route.with(warp::log("example"));
/// ```
fn with<W>(self, wrapper: W) -> W::Wrapped
where
Self: Sized,
W: Wrap<Self>,
{
wrapper.wrap(self)
}
/// Boxes this filter into a trait object, making it easier to name the type.
///
/// # Example
///
/// ```
/// use warp::Filter;
///
/// fn impl_reply() -> warp::filters::BoxedFilter<(impl warp::Reply,)> {
/// warp::any()
/// .map(warp::reply)
/// .boxed()
/// }
///
/// fn named_i32() -> warp::filters::BoxedFilter<(i32,)> {
/// warp::path::param::<i32>()
/// .boxed()
/// }
///
/// fn named_and() -> warp::filters::BoxedFilter<(i32, String)> {
/// warp::path::param::<i32>()
/// .and(warp::header::<String>("host"))
/// .boxed()
/// }
/// ```
fn boxed(self) -> BoxedFilter<Self::Extract>
where
Self: Sized + Send + Sync + 'static,
Self::Extract: Send,
Self::Error: Into<Rejection>,
{
BoxedFilter::new(self)
}
}
impl<T: FilterBase> Filter for T {}
pub trait FilterClone: Filter + Clone {}
impl<T: Filter + Clone> FilterClone for T {}
fn _assert_object_safe() {
fn _assert(_f: &dyn Filter<Extract = (), Error = (), Future = future::Ready<()>>) {}
}
// ===== FilterFn =====
pub(crate) fn filter_fn<F, U>(func: F) -> FilterFn<F>
where
F: Fn(&mut Route) -> U,
U: TryFuture,
U::Ok: Tuple,
U::Error: IsReject,
{
FilterFn { func }
}
pub(crate) fn filter_fn_one<F, U>(
func: F,
) -> impl Filter<Extract = (U::Ok,), Error = U::Error> + Copy
where
F: Fn(&mut Route) -> U + Copy,
U: TryFuture + Send + 'static,
U::Ok: Send,
U::Error: IsReject,
{
filter_fn(move |route| func(route).map_ok(|item| (item,)))
}
#[derive(Copy, Clone)]
#[allow(missing_debug_implementations)]
pub(crate) struct FilterFn<F> {
// TODO: could include a `debug_str: &'static str` to be used in Debug impl
func: F,
}
impl<F, U> FilterBase for FilterFn<F>
where
F: Fn(&mut Route) -> U,
U: TryFuture + Send + 'static,
U::Ok: Tuple + Send,
U::Error: IsReject,
{
type Extract = U::Ok;
type Error = U::Error;
type Future = future::IntoFuture<U>;
#[inline]
fn filter(&self, _: Internal) -> Self::Future {
route::with(|route| (self.func)(route)).into_future()
}
}