exr/image/
mod.rs

1
2//! Data structures that represent a complete exr image.
3//! Contains generic structs that must be nested to obtain a complete image type.
4//!
5//!
6//! For example, an rgba image containing multiple layers
7//! can be represented using `Image<Layers<SpecificChannels<MyPixelStorage>>>`.
8//! An image containing a single layer with arbitrary channels and no deep data
9//! can be represented using `Image<Layer<AnyChannels<FlatSamples>>>`.
10//!
11//!
12//! These and other predefined types are included in this module as
13//! 1. `PixelImage`: A single layer, fixed set of arbitrary channels.
14//! 1. `PixelLayersImage`: Multiple layers, fixed set of arbitrary channels.
15//! 1. `RgbaImage`: A single layer, fixed set of channels: rgb, optional a.
16//! 1. `RgbaLayersImage`: Multiple layers, fixed set of channels: rgb, optional a.
17//! 1. `FlatImage`: Multiple layers, any channels, no deep data.
18//! 1. `AnyImage`: All supported data (multiple layers, arbitrary channels, no deep data yet)
19//!
20//! You can also use your own types inside an image,
21//! for example if you want to use a custom sample storage.
22//!
23//! This is the high-level interface for the pixels of an image.
24//! See `exr::blocks` module for a low-level interface.
25
26pub mod read;
27pub mod write;
28pub mod crop;
29pub mod pixel_vec;
30pub mod recursive;
31// pub mod channel_groups;
32
33
34use crate::meta::header::{ImageAttributes, LayerAttributes};
35use crate::meta::attribute::{Text, LineOrder};
36use half::f16;
37use crate::math::{Vec2, RoundingMode};
38use crate::compression::Compression;
39use smallvec::{SmallVec};
40use crate::error::Error;
41
42/// Don't do anything
43pub(crate) fn ignore_progress(_progress: f64){}
44
45/// This image type contains all supported exr features and can represent almost any image.
46/// It currently does not support deep data yet.
47pub type AnyImage = Image<Layers<AnyChannels<Levels<FlatSamples>>>>;
48
49/// This image type contains the most common exr features and can represent almost any plain image.
50/// Does not contain resolution levels. Does not support deep data.
51pub type FlatImage = Image<Layers<AnyChannels<FlatSamples>>>;
52
53/// This image type contains multiple layers, with each layer containing a user-defined type of pixels.
54pub type PixelLayersImage<Storage, Channels> = Image<Layers<SpecificChannels<Storage, Channels>>>;
55
56/// This image type contains a single layer containing a user-defined type of pixels.
57pub type PixelImage<Storage, Channels> = Image<Layer<SpecificChannels<Storage, Channels>>>;
58
59/// This image type contains multiple layers, with each layer containing a user-defined type of rgba pixels.
60pub type RgbaLayersImage<Storage> = PixelLayersImage<Storage, RgbaChannels>;
61
62/// This image type contains a single layer containing a user-defined type of rgba pixels.
63pub type RgbaImage<Storage> = PixelImage<Storage, RgbaChannels>;
64
65/// Contains information about the channels in an rgba image, in the order `(red, green, blue, alpha)`.
66/// The alpha channel is not required. May be `None` if the image did not contain an alpha channel.
67pub type RgbaChannels = (ChannelDescription, ChannelDescription, ChannelDescription, Option<ChannelDescription>);
68
69/// Contains information about the channels in an rgb image, in the order `(red, green, blue)`.
70pub type RgbChannels = (ChannelDescription, ChannelDescription, ChannelDescription);
71
72/// The complete exr image.
73/// `Layers` can be either a single `Layer` or `Layers`.
74#[derive(Debug, Clone, PartialEq)]
75pub struct Image<Layers> {
76
77    /// Attributes that apply to the whole image file.
78    /// These attributes appear in each layer of the file.
79    /// Excludes technical meta data.
80    /// Each layer in this image also has its own attributes.
81    pub attributes: ImageAttributes,
82
83    /// The layers contained in the image file.
84    /// Can be either a single `Layer` or a list of layers.
85    pub layer_data: Layers,
86}
87
88/// A list of layers. `Channels` can be `SpecificChannels` or `AnyChannels`.
89pub type Layers<Channels> = SmallVec<[Layer<Channels>; 2]>;
90
91/// A single Layer, including fancy attributes and compression settings.
92/// `Channels` can be either `SpecificChannels` or `AnyChannels`
93#[derive(Debug, Clone, PartialEq)]
94pub struct Layer<Channels> {
95
96    /// The actual pixel data. Either `SpecificChannels` or `AnyChannels`
97    pub channel_data: Channels,
98
99    /// Attributes that apply to this layer.
100    /// May still contain attributes that should be considered global for an image file.
101    /// Excludes technical meta data: Does not contain data window size, line order, tiling, or compression attributes.
102    /// The image also has attributes, which do not differ per layer.
103    pub attributes: LayerAttributes,
104
105    /// The pixel resolution of this layer.
106    /// See `layer.attributes` for more attributes, like for example layer position.
107    pub size: Vec2<usize>,
108
109    /// How the pixels are split up and compressed.
110    pub encoding: Encoding
111}
112
113/// How the pixels are split up and compressed.
114#[derive(Copy, Clone, Debug, PartialEq)]
115pub struct Encoding {
116
117    /// How the pixel data of all channels in this layer is compressed. May be `Compression::Uncompressed`.
118    /// See `layer.attributes` for more attributes.
119    pub compression: Compression,
120
121    /// Describes how the pixels of this layer are divided into smaller blocks.
122    /// Either splits the image into its scan lines or splits the image into tiles of the specified size.
123    /// A single block can be loaded without processing all bytes of a file.
124    pub blocks: Blocks,
125
126    /// In what order the tiles of this header occur in the file.
127    /// Does not change any actual image orientation.
128    /// See `layer.attributes` for more attributes.
129    pub line_order: LineOrder,
130}
131
132/// How the image pixels are split up into separate blocks.
133#[derive(Copy, Clone, Debug, PartialEq, Eq)]
134pub enum Blocks {
135
136    /// The image is divided into scan line blocks.
137    /// The number of scan lines in a block depends on the compression method.
138    ScanLines,
139
140    /// The image is divided into tile blocks.
141    /// Also specifies the size of each tile in the image
142    /// and whether this image contains multiple resolution levels.
143    ///
144    /// The inner `Vec2` describes the size of each tile.
145    /// Stays the same number of pixels across all levels.
146    Tiles (Vec2<usize>)
147}
148
149
150/// A grid of pixels. The pixels are written to your custom pixel storage.
151/// `PixelStorage` can be anything, from a flat `Vec<f16>` to `Vec<Vec<AnySample>>`, as desired.
152/// In order to write this image to a file, your `PixelStorage` must implement [`GetPixel`].
153#[derive(Debug, Clone, PartialEq, Eq)]
154pub struct SpecificChannels<Pixels, ChannelsDescription> {
155
156    /// A description of the channels in the file, as opposed to the channels in memory.
157    /// Should always be a tuple containing `ChannelDescription`s, one description for each channel.
158    pub channels: ChannelsDescription, // TODO this is awkward. can this be not a type parameter please? maybe vec<option<chan_info>> ??
159
160    /// Your custom pixel storage
161    // TODO should also support `Levels<YourStorage>`, where levels are desired!
162    pub pixels: Pixels, // TODO rename to "pixels"?
163}
164
165
166/// A dynamic list of arbitrary channels.
167/// `Samples` can currently only be `FlatSamples` or `Levels<FlatSamples>`.
168#[derive(Debug, Clone, PartialEq)]
169pub struct AnyChannels<Samples> {
170
171    /// This list must be sorted alphabetically, by channel name.
172    /// Use `AnyChannels::sorted` for automatic sorting.
173    pub list: SmallVec<[AnyChannel<Samples>; 4]>
174}
175
176/// A single arbitrary channel.
177/// `Samples` can currently only be `FlatSamples` or `Levels<FlatSamples>`
178#[derive(Debug, Clone, PartialEq)]
179pub struct AnyChannel<Samples> {
180
181    /// One of "R", "G", or "B" most of the time.
182    pub name: Text,
183
184    /// The actual pixel data.
185    /// Can be `FlatSamples` or `Levels<FlatSamples>`.
186    pub sample_data: Samples,
187
188    /// This attribute only tells lossy compression methods
189    /// whether this value should be quantized exponentially or linearly.
190    ///
191    /// Should be `false` for red, green, blue and luma channels, as they are not perceived linearly.
192    /// Should be `true` for hue, chroma, saturation, and alpha channels.
193    pub quantize_linearly: bool,
194
195    /// How many of the samples are skipped compared to the other channels in this layer.
196    ///
197    /// Can be used for chroma subsampling for manual lossy data compression.
198    /// Values other than 1 are allowed only in flat, scan-line based images.
199    /// If an image is deep or tiled, the sampling rates for all of its channels must be 1.
200    pub sampling: Vec2<usize>,
201}
202
203/// One or multiple resolution levels of the same image.
204/// `Samples` can be `FlatSamples`.
205#[derive(Debug, Clone, PartialEq, Eq)]
206pub enum Levels<Samples> {
207
208    /// A single image without smaller versions of itself.
209    /// If you only want to handle exclusively this case, use `Samples` directly, and not `Levels<Samples>`.
210    Singular(Samples),
211
212    /// Contains uniformly scaled smaller versions of the original.
213    Mip
214    {
215        /// Whether to round up or down when calculating Mip/Rip levels.
216        rounding_mode: RoundingMode,
217
218        /// The smaller versions of the original.
219        level_data: LevelMaps<Samples>
220    },
221
222    /// Contains any possible combination of smaller versions of the original.
223    Rip
224    {
225        /// Whether to round up or down when calculating Mip/Rip levels.
226        rounding_mode: RoundingMode,
227
228        /// The smaller versions of the original.
229        level_data: RipMaps<Samples>
230    },
231}
232
233/// A list of resolution levels. `Samples` can currently only be `FlatSamples`.
234// or `DeepAndFlatSamples` (not yet implemented).
235pub type LevelMaps<Samples> = Vec<Samples>;
236
237/// In addition to the full resolution image,
238/// this layer also contains smaller versions,
239/// and each smaller version has further versions with varying aspect ratios.
240/// `Samples` can currently only be `FlatSamples`.
241#[derive(Debug, Clone, PartialEq, Eq)]
242pub struct RipMaps<Samples> {
243
244    /// A flattened list containing the individual levels
245    pub map_data: LevelMaps<Samples>,
246
247    /// The number of levels that were generated along the x-axis and y-axis.
248    pub level_count: Vec2<usize>,
249}
250
251
252// TODO deep data
253/*#[derive(Clone, PartialEq)]
254pub enum DeepAndFlatSamples {
255    Deep(DeepSamples),
256    Flat(FlatSamples)
257}*/
258
259/// A vector of non-deep values (one value per pixel per channel).
260/// Stores row after row in a single vector.
261/// The precision of all values is either `f16`, `f32` or `u32`.
262///
263/// Since this is close to the pixel layout in the byte file,
264/// this will most likely be the fastest storage.
265/// Using a different storage, for example `SpecificChannels`,
266/// will probably be slower.
267#[derive(Clone, PartialEq)] // debug is implemented manually
268pub enum FlatSamples {
269
270    /// A vector of non-deep `f16` values.
271    F16(Vec<f16>),
272
273    /// A vector of non-deep `f32` values.
274    F32(Vec<f32>),
275
276    /// A vector of non-deep `u32` values.
277    U32(Vec<u32>),
278}
279
280
281/*#[derive(Clone, PartialEq)]
282pub enum DeepSamples {
283    F16(Vec<Vec<f16>>),
284    F32(Vec<Vec<f32>>),
285    U32(Vec<Vec<u32>>),
286}*/
287
288use crate::block::samples::*;
289use crate::meta::attribute::*;
290use crate::error::Result;
291use crate::block::samples::Sample;
292use crate::image::write::channels::*;
293use crate::image::write::layers::WritableLayers;
294use crate::image::write::samples::{WritableSamples};
295use crate::meta::{mip_map_levels, rip_map_levels};
296use crate::io::Data;
297use crate::image::recursive::{NoneMore, Recursive, IntoRecursive};
298use std::marker::PhantomData;
299use std::ops::Not;
300use crate::image::validate_results::{ValidationOptions};
301
302
303impl<Channels> Layer<Channels> {
304    /// Sometimes called "data window"
305    pub fn absolute_bounds(&self) -> IntegerBounds {
306        IntegerBounds::new(self.attributes.layer_position, self.size)
307    }
308}
309
310
311impl<SampleStorage, Channels> SpecificChannels<SampleStorage, Channels> {
312    /// Create some pixels with channel information.
313    /// The `Channels` must be a tuple containing either `ChannelDescription` or `Option<ChannelDescription>`.
314    /// The length of the tuple dictates the number of channels in the sample storage.
315    pub fn new(channels: Channels, source_samples: SampleStorage) -> Self
316        where
317            SampleStorage: GetPixel,
318            SampleStorage::Pixel: IntoRecursive,
319            Channels: Sync + Clone + IntoRecursive,
320            <Channels as IntoRecursive>::Recursive: WritableChannelsDescription<<SampleStorage::Pixel as IntoRecursive>::Recursive>,
321    {
322        SpecificChannels { channels, pixels: source_samples }
323    }
324}
325
326/// Convert this type into one of the known sample types.
327/// Also specify the preferred native type, which dictates the default sample type in the image.
328pub trait IntoSample: IntoNativeSample {
329
330    /// The native sample types that this type should be converted to.
331    const PREFERRED_SAMPLE_TYPE: SampleType;
332}
333
334impl IntoSample for f16 { const PREFERRED_SAMPLE_TYPE: SampleType = SampleType::F16; }
335impl IntoSample for f32 { const PREFERRED_SAMPLE_TYPE: SampleType = SampleType::F32; }
336impl IntoSample for u32 { const PREFERRED_SAMPLE_TYPE: SampleType = SampleType::U32; }
337
338/// Used to construct a `SpecificChannels`.
339/// Call `with_named_channel` as many times as desired,
340/// and then call `with_pixels` to define the colors.
341#[derive(Debug)]
342pub struct SpecificChannelsBuilder<RecursiveChannels, RecursivePixel> {
343    channels: RecursiveChannels,
344    px: PhantomData<RecursivePixel>
345}
346
347/// This check can be executed at compile time
348/// if the channel names are `&'static str` and the compiler is smart enough.
349pub trait CheckDuplicates {
350
351    /// Check for duplicate channel names.
352    fn already_contains(&self, name: &Text) -> bool;
353}
354
355impl CheckDuplicates for NoneMore {
356    fn already_contains(&self, _: &Text) -> bool { false }
357}
358
359impl<Inner: CheckDuplicates> CheckDuplicates for Recursive<Inner, ChannelDescription> {
360    fn already_contains(&self, name: &Text) -> bool {
361        &self.value.name == name || self.inner.already_contains(name)
362    }
363}
364
365impl SpecificChannels<(),()>
366{
367    /// Start building some specific channels. On the result of this function,
368    /// call `with_named_channel` as many times as desired,
369    /// and then call `with_pixels` to define the colors.
370    pub fn build() -> SpecificChannelsBuilder<NoneMore, NoneMore> {
371        SpecificChannelsBuilder { channels: NoneMore, px: Default::default() }
372    }
373}
374
375impl<RecursiveChannels: CheckDuplicates, RecursivePixel> SpecificChannelsBuilder<RecursiveChannels, RecursivePixel>
376{
377    /// Add another channel to this image. Does not add the actual pixels,
378    /// but instead only declares the presence of the channel.
379    /// Panics if the name contains unsupported characters.
380    /// Panics if a channel with the same name already exists.
381    /// Use `Text::new_or_none()` to manually handle these cases.
382    /// Use `with_channel_details` instead if you want to specify more options than just the name of the channel.
383    /// The generic parameter can usually be inferred from the closure in `with_pixels`.
384    pub fn with_channel<Sample: IntoSample>(self, name: impl Into<Text>)
385                                            -> SpecificChannelsBuilder<Recursive<RecursiveChannels, ChannelDescription>, Recursive<RecursivePixel, Sample>>
386    {
387        self.with_channel_details::<Sample>(ChannelDescription::named(name, Sample::PREFERRED_SAMPLE_TYPE))
388    }
389
390    /// Add another channel to this image. Does not add the actual pixels,
391    /// but instead only declares the presence of the channel.
392    /// Use `with_channel` instead if you only want to specify the name of the channel.
393    /// Panics if a channel with the same name already exists.
394    /// The generic parameter can usually be inferred from the closure in `with_pixels`.
395    pub fn with_channel_details<Sample: Into<Sample>>(self, channel: ChannelDescription)
396        -> SpecificChannelsBuilder<Recursive<RecursiveChannels, ChannelDescription>, Recursive<RecursivePixel, Sample>>
397    {
398        // duplicate channel names are checked later, but also check now to make sure there are no problems with the `SpecificChannelsWriter`
399        assert!(self.channels.already_contains(&channel.name).not(), "channel name `{}` is duplicate", channel.name);
400
401        SpecificChannelsBuilder {
402            channels: Recursive::new(self.channels, channel),
403            px: PhantomData::default()
404        }
405    }
406
407    /// Specify the actual pixel contents of the image.
408    /// You can pass a closure that returns a color for each pixel (`Fn(Vec2<usize>) -> Pixel`),
409    /// or you can pass your own image if it implements `GetPixel`.
410    /// The pixel type must be a tuple with the correct number of entries, depending on the number of channels.
411    /// The tuple entries can be either `f16`, `f32`, `u32` or `Sample`.
412    /// Use `with_pixel_fn` instead of this function, to get extra type safety for your pixel closure.
413    pub fn with_pixels<Pixels>(self, get_pixel: Pixels) -> SpecificChannels<Pixels, RecursiveChannels>
414        where Pixels: GetPixel, <Pixels as GetPixel>::Pixel: IntoRecursive<Recursive=RecursivePixel>,
415    {
416        SpecificChannels {
417            channels: self.channels,
418            pixels: get_pixel
419        }
420    }
421
422    /// Specify the contents of the image.
423    /// The pixel type must be a tuple with the correct number of entries, depending on the number of channels.
424    /// The tuple entries can be either `f16`, `f32`, `u32` or `Sample`.
425    /// Use `with_pixels` instead of this function, if you want to pass an object that is not a closure.
426    ///
427    /// Usually, the compiler can infer the type of the pixel (for example, `f16,f32,f32`) from the closure.
428    /// If that's not possible, you can specify the type of the channels
429    /// when declaring the channel (for example, `with_named_channel::<f32>("R")`).
430    pub fn with_pixel_fn<Pixel, Pixels>(self, get_pixel: Pixels) -> SpecificChannels<Pixels, RecursiveChannels>
431        where Pixels: Sync + Fn(Vec2<usize>) -> Pixel, Pixel: IntoRecursive<Recursive=RecursivePixel>,
432    {
433        SpecificChannels {
434            channels: self.channels,
435            pixels: get_pixel
436        }
437    }
438}
439
440impl<SampleStorage> SpecificChannels<
441    SampleStorage, (ChannelDescription, ChannelDescription, ChannelDescription, ChannelDescription)
442>
443{
444
445    /// Create an image with red, green, blue, and alpha channels.
446    /// You can pass a closure that returns a color for each pixel (`Fn(Vec2<usize>) -> (R,G,B,A)`),
447    /// or you can pass your own image if it implements `GetPixel<Pixel=(R,G,B,A)>`.
448    /// Each of `R`, `G`, `B` and `A` can be either `f16`, `f32`, `u32`, or `Sample`.
449    pub fn rgba<R, G, B, A>(source_samples: SampleStorage) -> Self
450        where R: IntoSample, G: IntoSample,
451              B: IntoSample, A: IntoSample,
452              SampleStorage: GetPixel<Pixel=(R, G, B, A)>
453    {
454        SpecificChannels {
455            channels: (
456                ChannelDescription::named("R", R::PREFERRED_SAMPLE_TYPE),
457                ChannelDescription::named("G", G::PREFERRED_SAMPLE_TYPE),
458                ChannelDescription::named("B", B::PREFERRED_SAMPLE_TYPE),
459                ChannelDescription::named("A", A::PREFERRED_SAMPLE_TYPE),
460            ),
461            pixels: source_samples
462        }
463    }
464}
465
466impl<SampleStorage> SpecificChannels<
467    SampleStorage, (ChannelDescription, ChannelDescription, ChannelDescription)
468>
469{
470
471    /// Create an image with red, green, and blue channels.
472    /// You can pass a closure that returns a color for each pixel (`Fn(Vec2<usize>) -> (R,G,B)`),
473    /// or you can pass your own image if it implements `GetPixel<Pixel=(R,G,B)>`.
474    /// Each of `R`, `G` and `B` can be either `f16`, `f32`, `u32`, or `Sample`.
475    pub fn rgb<R, G, B>(source_samples: SampleStorage) -> Self
476        where R: IntoSample, G: IntoSample, B: IntoSample,
477              SampleStorage: GetPixel<Pixel=(R, G, B)>
478    {
479        SpecificChannels {
480            channels: (
481                ChannelDescription::named("R", R::PREFERRED_SAMPLE_TYPE),
482                ChannelDescription::named("G", G::PREFERRED_SAMPLE_TYPE),
483                ChannelDescription::named("B", B::PREFERRED_SAMPLE_TYPE),
484            ),
485            pixels: source_samples
486        }
487    }
488}
489
490
491/// A list of samples representing a single pixel.
492/// Does not heap allocate for images with 8 or fewer channels.
493pub type FlatSamplesPixel = SmallVec<[Sample; 8]>;
494
495// TODO also deep samples?
496impl Layer<AnyChannels<FlatSamples>> {
497
498    /// Use `samples_at` if you can borrow from this layer
499    pub fn sample_vec_at(&self, position: Vec2<usize>) -> FlatSamplesPixel {
500        self.samples_at(position).collect()
501    }
502
503    /// Lookup all channels of a single pixel in the image
504    pub fn samples_at(&self, position: Vec2<usize>) -> FlatSampleIterator<'_> {
505        FlatSampleIterator {
506            layer: self,
507            channel_index: 0,
508            position
509        }
510    }
511}
512
513/// Iterate over all channels of a single pixel in the image
514#[derive(Debug, Copy, Clone, PartialEq)]
515pub struct FlatSampleIterator<'s> {
516    layer: &'s Layer<AnyChannels<FlatSamples>>,
517    channel_index: usize,
518    position: Vec2<usize>,
519}
520
521impl Iterator for FlatSampleIterator<'_> {
522    type Item = Sample;
523
524    fn next(&mut self) -> Option<Self::Item> {
525        if self.channel_index < self.layer.channel_data.list.len() {
526            let channel = &self.layer.channel_data.list[self.channel_index];
527            let sample = channel.sample_data.value_by_flat_index(self.position.flat_index_for_size(self.layer.size));
528            self.channel_index += 1;
529            Some(sample)
530        }
531        else { None }
532    }
533
534    fn nth(&mut self, pos: usize) -> Option<Self::Item> {
535        self.channel_index += pos;
536        self.next()
537    }
538
539    fn size_hint(&self) -> (usize, Option<usize>) {
540        let remaining = self.layer.channel_data.list.len().saturating_sub(self.channel_index);
541        (remaining, Some(remaining))
542    }
543}
544
545impl ExactSizeIterator for FlatSampleIterator<'_> {}
546
547impl<SampleData> AnyChannels<SampleData>{
548
549    /// A new list of arbitrary channels. Sorts the list to make it alphabetically stable.
550    pub fn sort(mut list: SmallVec<[AnyChannel<SampleData>; 4]>) -> Self {
551        list.sort_unstable_by_key(|channel| channel.name.clone()); // TODO no clone?
552        Self { list }
553    }
554}
555
556// FIXME check content size of layer somewhere??? before writing?
557impl<LevelSamples> Levels<LevelSamples> {
558
559    /// Get a resolution level by index, sorted by size, decreasing.
560    pub fn get_level(&self, level: Vec2<usize>) -> Result<&LevelSamples> {
561        match self {
562            Levels::Singular(block) => {
563                debug_assert_eq!(level, Vec2(0,0), "singular image cannot write leveled blocks bug");
564                Ok(block)
565            },
566
567            Levels::Mip { level_data, .. } => {
568                debug_assert_eq!(level.x(), level.y(), "mip map levels must be equal on x and y bug");
569                level_data.get(level.x()).ok_or(Error::invalid("block mip level index"))
570            },
571
572            Levels::Rip { level_data, .. } => {
573                level_data.get_by_level(level).ok_or(Error::invalid("block rip level index"))
574            }
575        }
576    }
577
578    /// Get a resolution level by index, sorted by size, decreasing.
579    // TODO storage order for RIP maps?
580    pub fn get_level_mut(&mut self, level: Vec2<usize>) -> Result<&mut LevelSamples> {
581        match self {
582            Levels::Singular(ref mut block) => {
583                debug_assert_eq!(level, Vec2(0,0), "singular image cannot write leveled blocks bug");
584                Ok(block)
585            },
586
587            Levels::Mip { level_data, .. } => {
588                debug_assert_eq!(level.x(), level.y(), "mip map levels must be equal on x and y bug");
589                level_data.get_mut(level.x()).ok_or(Error::invalid("block mip level index"))
590            },
591
592            Levels::Rip { level_data, .. } => {
593                level_data.get_by_level_mut(level).ok_or(Error::invalid("block rip level index"))
594            }
595        }
596    }
597
598    /// Get a slice of all resolution levels, sorted by size, decreasing.
599    pub fn levels_as_slice(&self) -> &[LevelSamples] {
600        match self {
601            Levels::Singular(data) => std::slice::from_ref(data),
602            Levels::Mip { level_data, .. } => level_data,
603            Levels::Rip { level_data, .. } => &level_data.map_data,
604        }
605    }
606
607    /// Get a mutable slice of all resolution levels, sorted by size, decreasing.
608    pub fn levels_as_slice_mut(&mut self) -> &mut [LevelSamples] {
609        match self {
610            Levels::Singular(data) => std::slice::from_mut(data),
611            Levels::Mip { level_data, .. } => level_data,
612            Levels::Rip { level_data, .. } => &mut level_data.map_data,
613        }
614    }
615
616    // TODO simplify working with levels in general! like level_size_by_index and such
617
618    /*pub fn levels_with_size(&self, rounding: RoundingMode, max_resolution: Vec2<usize>) -> Vec<(Vec2<usize>, &S)> {
619        match self {
620            Levels::Singular(ref data) => vec![ (max_resolution, data) ],
621            Levels::Mip(ref maps) => mip_map_levels(rounding, max_resolution).map(|(_index, size)| size).zip(maps).collect(),
622            Levels::Rip(ref rip_maps) => rip_map_levels(rounding, max_resolution).map(|(_index, size)| size).zip(&rip_maps.map_data).collect(),
623        }
624    }*/
625
626    /// Whether this stores multiple resolution levels.
627    pub fn level_mode(&self) -> LevelMode {
628        match self {
629            Levels::Singular(_) => LevelMode::Singular,
630            Levels::Mip { .. } => LevelMode::MipMap,
631            Levels::Rip { .. } => LevelMode::RipMap,
632        }
633    }
634}
635
636impl<Samples> RipMaps<Samples> {
637
638    /// Flatten the 2D level index to a one dimensional index.
639    pub fn get_level_index(&self, level: Vec2<usize>) -> usize {
640        level.flat_index_for_size(self.level_count)
641    }
642
643    /// Return a level by level index. Level `0` has the largest resolution.
644    pub fn get_by_level(&self, level: Vec2<usize>) -> Option<&Samples> {
645        self.map_data.get(self.get_level_index(level))
646    }
647
648    /// Return a mutable level reference by level index. Level `0` has the largest resolution.
649    pub fn get_by_level_mut(&mut self, level: Vec2<usize>) -> Option<&mut Samples> {
650        let index = self.get_level_index(level);
651        self.map_data.get_mut(index)
652    }
653}
654
655impl FlatSamples {
656
657    /// The number of samples in the image. Should be the width times the height.
658    /// Might vary when subsampling is used.
659    pub fn len(&self) -> usize {
660        match self {
661            FlatSamples::F16(vec) => vec.len(),
662            FlatSamples::F32(vec) => vec.len(),
663            FlatSamples::U32(vec) => vec.len(),
664        }
665    }
666
667    /// Views all samples in this storage as f32.
668    /// Matches the underlying sample type again for every sample,
669    /// match yourself if performance is critical! Does not allocate.
670    pub fn values_as_f32<'s>(&'s self) -> impl 's + Iterator<Item = f32> {
671        self.values().map(|sample| sample.to_f32())
672    }
673
674    /// All samples in this storage as iterator.
675    /// Matches the underlying sample type again for every sample,
676    /// match yourself if performance is critical! Does not allocate.
677    pub fn values<'s>(&'s self) -> impl 's + Iterator<Item = Sample> {
678        (0..self.len()).map(move |index| self.value_by_flat_index(index))
679    }
680
681    /// Lookup a single value, by flat index.
682    /// The flat index can be obtained using `Vec2::flatten_for_width`
683    /// which computes the index in a flattened array of pixel rows.
684    pub fn value_by_flat_index(&self, index: usize) -> Sample {
685        match self {
686            FlatSamples::F16(vec) => Sample::F16(vec[index]),
687            FlatSamples::F32(vec) => Sample::F32(vec[index]),
688            FlatSamples::U32(vec) => Sample::U32(vec[index]),
689        }
690    }
691}
692
693
694impl<'s, ChannelData:'s> Layer<ChannelData> {
695
696    /// Create a layer with the specified size, attributes, encoding and channels.
697    /// The channels can be either `SpecificChannels` or `AnyChannels`.
698    pub fn new(
699        dimensions: impl Into<Vec2<usize>>,
700        attributes: LayerAttributes,
701        encoding: Encoding,
702        channels: ChannelData
703    ) -> Self
704        where ChannelData: WritableChannels<'s>
705    {
706        Layer { channel_data: channels, attributes, size: dimensions.into(), encoding }
707    }
708
709    // TODO test pls wtf
710    /// Panics for images with Scanline encoding.
711    pub fn levels_with_resolution<'l, L>(&self, levels: &'l Levels<L>) -> Box<dyn 'l + Iterator<Item=(&'l L, Vec2<usize>)>> {
712        match levels {
713            Levels::Singular(level) => Box::new(std::iter::once((level, self.size))),
714
715            Levels::Mip { rounding_mode, level_data } => Box::new(level_data.iter().zip(
716                mip_map_levels(*rounding_mode, self.size)
717                    .map(|(_index, size)| size)
718            )),
719
720            Levels::Rip { rounding_mode, level_data } => Box::new(level_data.map_data.iter().zip(
721                rip_map_levels(*rounding_mode, self.size)
722                    .map(|(_index, size)| size)
723            )),
724        }
725    }
726}
727
728impl Encoding {
729
730    /// No compression. Massive space requirements.
731    /// Fast, because it minimizes data shuffling and reallocation.
732    pub const UNCOMPRESSED: Encoding = Encoding {
733        compression: Compression::Uncompressed,
734        blocks: Blocks::ScanLines, // longest lines, faster memcpy
735        line_order: LineOrder::Increasing // presumably fastest?
736    };
737
738    /// Run-length encoding with tiles of 64x64 pixels. This is the recommended default encoding.
739    /// Almost as fast as uncompressed data, but optimizes single-colored areas such as mattes and masks.
740    pub const FAST_LOSSLESS: Encoding = Encoding {
741        compression: Compression::RLE,
742        blocks: Blocks::Tiles(Vec2(64, 64)), // optimize for RLE compression
743        line_order: LineOrder::Unspecified
744    };
745
746    /// ZIP compression with blocks of 16 lines. Slow, but produces small files without visible artefacts.
747    pub const SMALL_LOSSLESS: Encoding = Encoding {
748        compression: Compression::ZIP16,
749        blocks: Blocks::ScanLines, // largest possible, but also with high probability of parallel workers
750        line_order: LineOrder::Increasing
751    };
752
753    /// PIZ compression with tiles of 256x256 pixels. Small images, not too slow.
754    pub const SMALL_FAST_LOSSLESS: Encoding = Encoding {
755        compression: Compression::PIZ,
756        blocks: Blocks::Tiles(Vec2(256, 256)),
757        line_order: LineOrder::Unspecified
758    };
759}
760
761impl Default for Encoding {
762    fn default() -> Self { Encoding::FAST_LOSSLESS }
763}
764
765impl<'s, LayerData: 's> Image<LayerData> where LayerData: WritableLayers<'s> {
766    /// Create an image with one or multiple layers. The layer can be a `Layer`, or `Layers` small vector, or `Vec<Layer>` or `&[Layer]`.
767    pub fn new(image_attributes: ImageAttributes, layer_data: LayerData) -> Self {
768        Image { attributes: image_attributes, layer_data }
769    }
770}
771
772// explorable constructor alias
773impl<'s, Channels: 's> Image<Layers<Channels>> where Channels: WritableChannels<'s> {
774    /// Create an image with multiple layers. The layer can be a `Vec<Layer>` or `Layers` (a small vector).
775    pub fn from_layers(image_attributes: ImageAttributes, layer_data: impl Into<Layers<Channels>>) -> Self {
776        Self::new(image_attributes, layer_data.into())
777    }
778}
779
780
781impl<'s, ChannelData:'s> Image<Layer<ChannelData>> where ChannelData: WritableChannels<'s> {
782
783    /// Uses the display position and size to the channel position and size of the layer.
784    pub fn from_layer(layer: Layer<ChannelData>) -> Self {
785        let bounds = IntegerBounds::new(layer.attributes.layer_position, layer.size);
786        Self::new(ImageAttributes::new(bounds), layer)
787    }
788
789    /// Uses empty attributes.
790    pub fn from_encoded_channels(size: impl Into<Vec2<usize>>, encoding: Encoding, channels: ChannelData) -> Self {
791        // layer name is not required for single-layer images
792        Self::from_layer(Layer::new(size, LayerAttributes::default(), encoding, channels))
793    }
794
795    /// Uses empty attributes and fast compression.
796    pub fn from_channels(size: impl Into<Vec2<usize>>, channels: ChannelData) -> Self {
797        Self::from_encoded_channels(size, Encoding::default(), channels)
798    }
799}
800
801
802impl Image<NoneMore> {
803
804    /// Create an empty image, to be filled with layers later on. Add at least one layer to obtain a valid image.
805    /// Call `with_layer(another_layer)` for each layer you want to add to this image.
806    pub fn empty(attributes: ImageAttributes) -> Self { Self { attributes, layer_data: NoneMore } }
807}
808
809impl<'s, InnerLayers: 's> Image<InnerLayers> where
810    InnerLayers: WritableLayers<'s>,
811{
812    /// Add another layer to this image. The layer type does
813    /// not have to equal the existing layers in this image.
814    pub fn with_layer<NewChannels>(self, layer: Layer<NewChannels>)
815        -> Image<Recursive<InnerLayers, Layer<NewChannels>>>
816        where NewChannels: 's + WritableChannels<'s>
817    {
818        Image {
819            attributes: self.attributes,
820            layer_data: Recursive::new(self.layer_data, layer)
821        }
822    }
823}
824
825
826impl<'s, SampleData: 's> AnyChannel<SampleData> {
827
828    /// Create a new channel without subsampling.
829    ///
830    /// Automatically flags this channel for specialized compression
831    /// if the name is "R", "G", "B", "Y", or "L",
832    /// as they typically encode values that are perceived non-linearly.
833    /// Construct the value yourself using `AnyChannel { .. }`, if you want to control this flag.
834    pub fn new(name: impl Into<Text>, sample_data: SampleData) -> Self where SampleData: WritableSamples<'s> {
835        let name: Text = name.into();
836
837        AnyChannel {
838            quantize_linearly: ChannelDescription::guess_quantization_linearity(&name),
839            name, sample_data,
840            sampling: Vec2(1, 1),
841        }
842    }
843
844    /*/// This is the same as `AnyChannel::new()`, but additionally ensures that the closure type is correct.
845    pub fn from_closure<V>(name: Text, sample_data: S) -> Self
846        where S: Sync + Fn(Vec2<usize>) -> V, V: InferSampleType + Data
847    {
848        Self::new(name, sample_data)
849    }*/
850}
851
852impl std::fmt::Debug for FlatSamples {
853    fn fmt(&self, formatter: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
854        if self.len() <= 6 {
855            match self {
856                FlatSamples::F16(vec) => vec.fmt(formatter),
857                FlatSamples::F32(vec) => vec.fmt(formatter),
858                FlatSamples::U32(vec) => vec.fmt(formatter),
859            }
860        }
861        else {
862            match self {
863                FlatSamples::F16(vec) => write!(formatter, "[f16; {}]", vec.len()),
864                FlatSamples::F32(vec) => write!(formatter, "[f32; {}]", vec.len()),
865                FlatSamples::U32(vec) => write!(formatter, "[u32; {}]", vec.len()),
866            }
867        }
868    }
869}
870
871
872
873/// Compare the result of a round trip test with the original method.
874/// Supports lossy compression methods.
875// #[cfg(test)] TODO do not ship this code
876pub mod validate_results {
877    use crate::prelude::*;
878    use smallvec::Array;
879    use crate::prelude::recursive::*;
880    use crate::image::write::samples::WritableSamples;
881    use std::ops::Not;
882    use crate::block::samples::IntoNativeSample;
883
884
885    /// Compare two objects, but with a few special quirks.
886    /// Intended mainly for unit testing.
887    pub trait ValidateResult {
888
889        /// Compare self with the other. Panics if not equal.
890        ///
891        /// Exceptional behaviour:
892        /// This does not work the other way around! This method is not symmetrical!
893        /// Returns whether the result is correct for this image.
894        /// For lossy compression methods, uses approximate equality.
895        /// Intended for unit testing.
896        ///
897        /// Warning: If you use `SpecificChannels`, the comparison might be inaccurate
898        /// for images with mixed compression methods. This is to be used with `AnyChannels` mainly.
899        fn assert_equals_result(&self, result: &Self) {
900            self.validate_result(result, ValidationOptions::default(), || String::new()).unwrap();
901        }
902
903        /// Compare self with the other.
904        /// Exceptional behaviour:
905        /// - Any two NaN values are considered equal, regardless of bit representation.
906        /// - If a `lossy` is specified, any two values that differ only by a small amount will be considered equal.
907        /// - If `nan_to_zero` is true, and __self is NaN/Infinite and the other value is zero, they are considered equal__
908        ///   (because some compression methods replace nan with zero)
909        ///
910        /// This does not work the other way around! This method is not symmetrical!
911        fn validate_result(
912            &self, lossy_result: &Self,
913            options: ValidationOptions,
914            // this is a lazy string, because constructing a string is only necessary in the case of an error,
915            // but eats up memory and allocation time every time. this was measured.
916            context: impl Fn() -> String
917        ) -> ValidationResult;
918    }
919
920    /// Whether to do accurate or approximate comparison.
921    #[derive(Default, Debug, Eq, PartialEq, Hash, Copy, Clone)]
922    pub struct ValidationOptions {
923        allow_lossy: bool,
924        nan_converted_to_zero: bool,
925    }
926
927    /// If invalid, contains the error message.
928    pub type ValidationResult = std::result::Result<(), String>;
929
930
931    impl<C> ValidateResult for Image<C> where C: ValidateResult {
932        fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
933            if self.attributes != other.attributes { Err(location() + "| image > attributes") }
934            else { self.layer_data.validate_result(&other.layer_data, options, || location() + "| image > layer data") }
935        }
936    }
937
938    impl<S> ValidateResult for Layer<AnyChannels<S>>
939        where AnyChannel<S>: ValidateResult, S: for<'a> WritableSamples<'a>
940    {
941        fn validate_result(&self, other: &Self, _overridden: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
942            let location = || format!("{} (layer `{:?}`)", location(), self.attributes.layer_name);
943            if self.attributes != other.attributes { Err(location() + " > attributes") }
944            else if self.encoding != other.encoding { Err(location() + " > encoding") }
945            else if self.size != other.size { Err(location() + " > size") }
946            else if self.channel_data.list.len() != other.channel_data.list.len() { Err(location() + " > channel count") }
947            else {
948                for (own_chan, other_chan) in self.channel_data.list.iter().zip(other.channel_data.list.iter()) {
949                    own_chan.validate_result(
950                        other_chan,
951
952                        ValidationOptions {
953                            // no tolerance for lossless channels
954                            allow_lossy: other.encoding.compression
955                                .is_lossless_for(other_chan.sample_data.sample_type()).not(),
956
957                            // consider nan and zero equal if the compression method does not support nan
958                            nan_converted_to_zero: other.encoding.compression.supports_nan().not()
959                        },
960
961                        || format!("{} > channel `{}`", location(), own_chan.name)
962                    )?;
963                }
964                Ok(())
965            }
966        }
967    }
968
969    impl<Px, Desc> ValidateResult for Layer<SpecificChannels<Px, Desc>>
970        where SpecificChannels<Px, Desc>: ValidateResult
971    {
972        /// This does an approximate comparison for all channels,
973        /// even if some channels can be compressed without loss.
974        fn validate_result(&self, other: &Self, _overridden: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
975            let location = || format!("{} (layer `{:?}`)", location(), self.attributes.layer_name);
976
977            // TODO dedup with above
978            if self.attributes != other.attributes { Err(location() + " > attributes") }
979            else if self.encoding != other.encoding { Err(location() + " > encoding") }
980            else if self.size != other.size { Err(location() + " > size") }
981            else {
982                let options = ValidationOptions {
983                    // no tolerance for lossless channels
984                    // pxr only looses data for f32 values, B44 only for f16, not other any other types
985                    allow_lossy: other.encoding.compression.may_loose_data(),// TODO check specific channels sample types
986
987                    // consider nan and zero equal if the compression method does not support nan
988                    nan_converted_to_zero: other.encoding.compression.supports_nan().not()
989                };
990
991                self.channel_data.validate_result(&other.channel_data, options, || location() + " > channel_data")?;
992                Ok(())
993            }
994        }
995    }
996
997    impl<S> ValidateResult for AnyChannels<S> where S: ValidateResult {
998        fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
999            self.list.validate_result(&other.list, options, location)
1000        }
1001    }
1002
1003    impl<S> ValidateResult for AnyChannel<S> where S: ValidateResult {
1004        fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
1005            if self.name != other.name { Err(location() + " > name") }
1006            else if self.quantize_linearly != other.quantize_linearly { Err(location() + " > quantize_linearly") }
1007            else if self.sampling != other.sampling { Err(location() + " > sampling") }
1008            else {
1009                self.sample_data.validate_result(&other.sample_data, options, || location() + " > sample_data")
1010            }
1011        }
1012    }
1013
1014    impl<Pxs, Chans> ValidateResult for SpecificChannels<Pxs, Chans> where Pxs: ValidateResult, Chans: Eq {
1015        fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
1016            if self.channels != other.channels { Err(location() + " > specific channels") }
1017            else { self.pixels.validate_result(&other.pixels, options, || location() + " > specific pixels") }
1018        }
1019    }
1020
1021    impl<S> ValidateResult for Levels<S> where S: ValidateResult {
1022        fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
1023            self.levels_as_slice().validate_result(&other.levels_as_slice(), options, || location() + " > levels")
1024        }
1025    }
1026
1027    impl ValidateResult for FlatSamples {
1028        fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
1029            use FlatSamples::*;
1030            match (self, other) {
1031                (F16(values), F16(other_values)) => values.as_slice().validate_result(&other_values.as_slice(), options, ||location() + " > f16 samples"),
1032                (F32(values), F32(other_values)) => values.as_slice().validate_result(&other_values.as_slice(), options, ||location() + " > f32 samples"),
1033                (U32(values), U32(other_values)) => values.as_slice().validate_result(&other_values.as_slice(), options, ||location() + " > u32 samples"),
1034                (own, other) => Err(format!("{}: samples type mismatch. expected {:?}, found {:?}", location(), own.sample_type(), other.sample_type()))
1035            }
1036        }
1037    }
1038
1039    impl<T> ValidateResult for &[T] where T: ValidateResult {
1040        fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
1041            if self.len() != other.len() { Err(location() + " count") }
1042            else {
1043                for (index, (slf, other)) in self.iter().zip(other.iter()).enumerate() {
1044                    slf.validate_result(other, options, ||format!("{} element [{}] of {}", location(), index, self.len()))?;
1045                }
1046                Ok(())
1047            }
1048        }
1049    }
1050
1051    impl<A: Array> ValidateResult for SmallVec<A> where A::Item: ValidateResult {
1052        fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
1053            self.as_slice().validate_result(&other.as_slice(), options, location)
1054        }
1055    }
1056
1057    impl<A> ValidateResult for Vec<A> where A: ValidateResult {
1058        fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
1059            self.as_slice().validate_result(&other.as_slice(), options, location)
1060        }
1061    }
1062
1063    impl<A,B,C,D> ValidateResult for (A, B, C, D) where A: Clone+ ValidateResult, B: Clone+ ValidateResult, C: Clone+ ValidateResult, D: Clone+ ValidateResult {
1064        fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
1065            self.clone().into_recursive().validate_result(&other.clone().into_recursive(), options, location)
1066        }
1067    }
1068
1069    impl<A,B,C> ValidateResult for (A, B, C) where A: Clone+ ValidateResult, B: Clone+ ValidateResult, C: Clone+ ValidateResult {
1070        fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
1071            self.clone().into_recursive().validate_result(&other.clone().into_recursive(), options, location)
1072        }
1073    }
1074
1075    // // (low priority because it is only used in the tests)
1076    /*TODO
1077    impl<Tuple> SimilarToLossy for Tuple where
1078        Tuple: Clone + IntoRecursive,
1079        <Tuple as IntoRecursive>::Recursive: SimilarToLossy,
1080    {
1081        fn similar_to_lossy(&self, other: &Self, max_difference: f32) -> bool {
1082            self.clone().into_recursive().similar_to_lossy(&other.clone().into_recursive(), max_difference)
1083        } // TODO no clone?
1084    }*/
1085
1086
1087    // implement for recursive types
1088    impl ValidateResult for NoneMore {
1089        fn validate_result(&self, _: &Self, _: ValidationOptions, _: impl Fn()->String) -> ValidationResult { Ok(()) }
1090    }
1091
1092    impl<Inner, T> ValidateResult for Recursive<Inner, T> where Inner: ValidateResult, T: ValidateResult {
1093        fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
1094            self.value.validate_result(&other.value, options, &location).and_then(|()|
1095                self.inner.validate_result(&other.inner, options, &location)
1096            )
1097        }
1098    }
1099
1100    impl<S> ValidateResult for Option<S> where S: ValidateResult {
1101        fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
1102            match (self, other) {
1103                (None, None) => Ok(()),
1104                (Some(value), Some(other)) => value.validate_result(other, options, location),
1105                _ => Err(location() + ": option mismatch")
1106            }
1107        }
1108    }
1109
1110    impl ValidateResult for f32 {
1111        fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
1112            if self == other || (self.is_nan() && other.is_nan()) || (options.nan_converted_to_zero && !self.is_normal() && *other == 0.0) {
1113                return Ok(());
1114            }
1115
1116            if options.allow_lossy {
1117                let epsilon = 0.06;
1118                let max_difference = 0.1;
1119
1120                let adaptive_threshold = epsilon * (self.abs() + other.abs());
1121                let tolerance = adaptive_threshold.max(max_difference);
1122                let difference = (self - other).abs();
1123
1124                return if difference <= tolerance { Ok(()) }
1125                else { Err(format!("{}: expected ~{}, found {} (adaptive tolerance {})", location(), self, other, tolerance)) };
1126            }
1127
1128            Err(format!("{}: expected exactly {}, found {}", location(), self, other))
1129        }
1130    }
1131
1132    impl ValidateResult for f16 {
1133        fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
1134            if self.to_bits() == other.to_bits() { Ok(()) } else {
1135                self.to_f32().validate_result(&other.to_f32(), options, location)
1136            }
1137        }
1138    }
1139
1140    impl ValidateResult for u32 {
1141        fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
1142            if self == other { Ok(()) } else { // todo to float conversion resulting in nan/infinity?
1143                self.to_f32().validate_result(&other.to_f32(), options, location)
1144            }
1145        }
1146    }
1147
1148    impl ValidateResult for Sample {
1149        fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
1150            use Sample::*;
1151            match (self, other) {
1152                (F16(a), F16(b)) => a.validate_result(b, options, ||location() + " (f16)"),
1153                (F32(a), F32(b)) => a.validate_result(b, options, ||location() + " (f32)"),
1154                (U32(a), U32(b)) => a.validate_result(b, options, ||location() + " (u32)"),
1155                (_,_) => Err(location() + ": sample type mismatch")
1156            }
1157        }
1158    }
1159
1160
1161    #[cfg(test)]
1162    mod test_value_result {
1163        use std::f32::consts::*;
1164        use std::io::Cursor;
1165        use crate::image::pixel_vec::PixelVec;
1166        use crate::image::validate_results::{ValidateResult, ValidationOptions};
1167        use crate::meta::attribute::LineOrder::Increasing;
1168        use crate::image::{FlatSamples};
1169
1170        fn expect_valid<T>(original: &T, result: &T, allow_lossy: bool, nan_converted_to_zero: bool) where T: ValidateResult {
1171            original.validate_result(
1172                result,
1173                ValidationOptions { allow_lossy, nan_converted_to_zero },
1174                || String::new()
1175            ).unwrap();
1176        }
1177
1178        fn expect_invalid<T>(original: &T, result: &T, allow_lossy: bool, nan_converted_to_zero: bool) where T: ValidateResult {
1179            assert!(original.validate_result(
1180                result,
1181                ValidationOptions { allow_lossy, nan_converted_to_zero },
1182                || String::new()
1183            ).is_err());
1184        }
1185
1186        #[test]
1187        fn test_f32(){
1188            let original:&[f32] = &[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, -20.4, f32::NAN];
1189            let lossy:&[f32] = &[0.0, 0.2, 0.2, 0.3, 0.4, 0.5, -20.5, f32::NAN];
1190
1191            expect_valid(&original, &original, true, true);
1192            expect_valid(&original, &original, true, false);
1193            expect_valid(&original, &original, false, true);
1194            expect_valid(&original, &original, false, false);
1195
1196            expect_invalid(&original, &lossy, false, false);
1197            expect_valid(&original, &lossy, true, false);
1198
1199            expect_invalid(&original, &&original[..original.len()-2], true, true);
1200
1201            // test relative comparison with some large values
1202            expect_valid(&1_000_f32, &1_001_f32, true, false);
1203            expect_invalid(&1_000_f32, &1_200_f32, true, false);
1204
1205            expect_valid(&10_000_f32, &10_100_f32, true, false);
1206            expect_invalid(&10_000_f32, &12_000_f32, true, false);
1207
1208            expect_valid(&33_120_f32, &30_120_f32, true, false);
1209            expect_invalid(&33_120_f32, &20_120_f32, true, false);
1210        }
1211
1212        #[test]
1213        fn test_nan(){
1214            let original:&[f32] = &[ 0.0, f32::NAN, f32::NAN ];
1215            let lossy:&[f32] = &[ 0.0, f32::NAN, 0.0 ];
1216
1217            expect_valid(&original, &lossy, true, true);
1218            expect_invalid(&lossy, &original, true, true);
1219
1220            expect_valid(&lossy, &lossy, true, true);
1221            expect_valid(&lossy, &lossy, false, true);
1222        }
1223
1224        #[test]
1225        fn test_error(){
1226
1227            fn print_error<T: ValidateResult>(original: &T, lossy: &T, allow_lossy: bool){
1228                let message = original
1229                    .validate_result(
1230                        &lossy,
1231                        ValidationOptions { allow_lossy, .. Default::default() },
1232                        || String::new() // type_name::<T>().to_string()
1233                    )
1234                    .unwrap_err();
1235
1236                println!("message: {}", message);
1237            }
1238
1239            let original:&[f32] = &[ 0.0, f32::NAN, f32::NAN ];
1240            let lossy:&[f32] = &[ 0.0, f32::NAN, 0.0 ];
1241            print_error(&original, &lossy, false);
1242
1243            print_error(&2.0, &1.0, true);
1244            print_error(&2.0, &1.0, false);
1245
1246            print_error(&FlatSamples::F32(vec![0.1,0.1]), &FlatSamples::F32(vec![0.1,0.2]), false);
1247            print_error(&FlatSamples::U32(vec![0,0]), &FlatSamples::F32(vec![0.1,0.2]), false);
1248
1249            {
1250                let image = crate::prelude::read_all_data_from_file("tests/images/valid/openexr/MultiResolution/Kapaa.exr").unwrap();
1251
1252                let mut mutated = image.clone();
1253                let samples = mutated.layer_data.first_mut().unwrap()
1254                    .channel_data.list.first_mut().unwrap().sample_data.levels_as_slice_mut().first_mut().unwrap();
1255
1256                match samples {
1257                    FlatSamples::F16(vals) => vals[100] = vals[1],
1258                    FlatSamples::F32(vals) => vals[100] = vals[1],
1259                    FlatSamples::U32(vals) => vals[100] = vals[1],
1260                }
1261
1262                print_error(&image, &mutated, false);
1263            }
1264
1265            // TODO check out more nested behaviour!
1266        }
1267
1268        #[test]
1269        fn test_uncompressed(){
1270            use crate::prelude::*;
1271
1272            let original_pixels: [(f32,f32,f32); 4] = [
1273                (0.0, -1.1, PI),
1274                (0.0, -1.1, TAU),
1275                (0.0, -1.1, f32::EPSILON),
1276                (f32::NAN, 10000.1, -1024.009),
1277            ];
1278
1279            let mut file_bytes = Vec::new();
1280            let original_image = Image::from_encoded_channels(
1281                (2,2),
1282                Encoding {
1283                    compression: Compression::Uncompressed,
1284                    line_order: Increasing, // FIXME unspecified may be optimized to increasing, which destroys test eq
1285                    .. Encoding::default()
1286                },
1287                SpecificChannels::rgb(PixelVec::new(Vec2(2,2), original_pixels.to_vec()))
1288            );
1289
1290            original_image.write().to_buffered(Cursor::new(&mut file_bytes)).unwrap();
1291
1292            let lossy_image = read().no_deep_data().largest_resolution_level()
1293                .rgb_channels(PixelVec::<(f32,f32,f32)>::constructor, PixelVec::set_pixel)
1294                .first_valid_layer().all_attributes().from_buffered(Cursor::new(&file_bytes)).unwrap();
1295
1296            original_image.assert_equals_result(&original_image);
1297            lossy_image.assert_equals_result(&lossy_image);
1298            original_image.assert_equals_result(&lossy_image);
1299            lossy_image.assert_equals_result(&original_image);
1300        }
1301
1302        #[test]
1303        fn test_compiles(){
1304            use crate::prelude::*;
1305
1306            fn accepts_validatable_value(_: &impl ValidateResult){}
1307
1308            let object: Levels<FlatSamples> = Levels::Singular(FlatSamples::F32(Vec::default()));
1309            accepts_validatable_value(&object);
1310
1311            let object: AnyChannels<Levels<FlatSamples>> = AnyChannels::sort(SmallVec::default());
1312            accepts_validatable_value(&object);
1313
1314            let layer: Layer<AnyChannels<Levels<FlatSamples>>> = Layer::new((0,0), Default::default(), Default::default(), object);
1315            accepts_validatable_value(&layer);
1316
1317            let layers: Layers<AnyChannels<Levels<FlatSamples>>> = Default::default();
1318            accepts_validatable_value(&layers);
1319
1320            let object: Image<Layer<AnyChannels<Levels<FlatSamples>>>> = Image::from_layer(layer);
1321            object.assert_equals_result(&object);
1322        }
1323    }
1324}
1325
1326