1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
use api::{CompositeOperator, FilterPrimitive, FilterPrimitiveInput, FilterPrimitiveKind};
use api::{LineStyle, LineOrientation, ClipMode, MixBlendMode, ColorF, ColorSpace, FilterOpGraphPictureBufferId};
use api::MAX_RENDER_TASK_SIZE;
use api::units::*;
use crate::box_shadow::BLUR_SAMPLE_SCALE;
use crate::clip::{ClipDataStore, ClipItemKind, ClipStore, ClipNodeRange};
use crate::command_buffer::{CommandBufferIndex, QuadFlags};
use crate::pattern::{PatternKind, PatternShaderInput};
use crate::spatial_tree::SpatialNodeIndex;
use crate::filterdata::SFilterData;
use crate::frame_builder::{FrameBuilderConfig, FrameBuildingState};
use crate::gpu_cache::{GpuCache, GpuCacheAddress, GpuCacheHandle};
use crate::gpu_types::{BorderInstance, ImageSource, UvRectKind, TransformPaletteId};
use crate::internal_types::{CacheTextureId, FastHashMap, FilterGraphNode, FilterGraphOp, FilterGraphPictureReference, SVGFE_CONVOLVE_VALUES_LIMIT, TextureSource, Swizzle};
use crate::picture::{ResolvedSurfaceTexture, MAX_SURFACE_SIZE};
use crate::prim_store::ClipData;
use crate::prim_store::gradient::{
FastLinearGradientTask, RadialGradientTask,
ConicGradientTask, LinearGradientTask,
};
use crate::resource_cache::{ResourceCache, ImageRequest};
use std::{usize, f32, i32, u32};
use crate::renderer::{GpuBufferAddress, GpuBufferBuilderF};
use crate::render_backend::DataStores;
use crate::render_target::{ResolveOp, RenderTargetKind};
use crate::render_task_graph::{PassId, RenderTaskId, RenderTaskGraphBuilder};
use crate::render_task_cache::{RenderTaskCacheEntryHandle, RenderTaskCacheKey, RenderTaskCacheKeyKind, RenderTaskParent};
use crate::segment::EdgeAaSegmentMask;
use crate::surface::SurfaceBuilder;
use smallvec::SmallVec;
const FLOATS_PER_RENDER_TASK_INFO: usize = 8;
pub const MAX_BLUR_STD_DEVIATION: f32 = 4.0;
pub const MIN_DOWNSCALING_RT_SIZE: i32 = 8;
fn render_task_sanity_check(size: &DeviceIntSize) {
if size.width > MAX_RENDER_TASK_SIZE ||
size.height > MAX_RENDER_TASK_SIZE {
error!("Attempting to create a render task of size {}x{}", size.width, size.height);
panic!();
}
}
#[derive(Debug, Copy, Clone, PartialEq)]
#[repr(C)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct RenderTaskAddress(pub i32);
impl Into<RenderTaskAddress> for RenderTaskId {
fn into(self) -> RenderTaskAddress {
RenderTaskAddress(self.index as i32)
}
}
/// A render task location that targets a persistent output buffer which
/// will be retained over multiple frames.
#[derive(Clone, Debug, Eq, PartialEq, Hash)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum StaticRenderTaskSurface {
/// The output of the `RenderTask` will be persisted beyond this frame, and
/// thus should be drawn into the `TextureCache`.
TextureCache {
/// Which texture in the texture cache should be drawn into.
texture: CacheTextureId,
/// What format this texture cache surface is
target_kind: RenderTargetKind,
},
/// Only used as a source for render tasks, can be any texture including an
/// external one.
ReadOnly {
source: TextureSource,
},
/// This render task will be drawn to a picture cache texture that is
/// persisted between both frames and scenes, if the content remains valid.
PictureCache {
/// Describes either a WR texture or a native OS compositor target
surface: ResolvedSurfaceTexture,
},
}
/// Identifies the output buffer location for a given `RenderTask`.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum RenderTaskLocation {
// Towards the beginning of the frame, most task locations are typically not
// known yet, in which case they are set to one of the following variants:
/// A dynamic task that has not yet been allocated a texture and rect.
Unallocated {
/// Requested size of this render task
size: DeviceIntSize,
},
/// Will be replaced by a Static location after the texture cache update.
CacheRequest {
size: DeviceIntSize,
},
/// Same allocation as an existing task deeper in the dependency graph
Existing {
parent_task_id: RenderTaskId,
/// Requested size of this render task
size: DeviceIntSize,
},
// Before batching begins, we expect that locations have been resolved to
// one of the following variants:
/// The `RenderTask` should be drawn to a target provided by the atlas
/// allocator. This is the most common case.
Dynamic {
/// Texture that this task was allocated to render on
texture_id: CacheTextureId,
/// Rectangle in the texture this task occupies
rect: DeviceIntRect,
},
/// A task that is output to a persistent / retained target.
Static {
/// Target to draw to
surface: StaticRenderTaskSurface,
/// Rectangle in the texture this task occupies
rect: DeviceIntRect,
},
}
impl RenderTaskLocation {
/// Returns true if this is a dynamic location.
pub fn is_dynamic(&self) -> bool {
match *self {
RenderTaskLocation::Dynamic { .. } => true,
_ => false,
}
}
pub fn size(&self) -> DeviceIntSize {
match self {
RenderTaskLocation::Unallocated { size } => *size,
RenderTaskLocation::Dynamic { rect, .. } => rect.size(),
RenderTaskLocation::Static { rect, .. } => rect.size(),
RenderTaskLocation::CacheRequest { size } => *size,
RenderTaskLocation::Existing { size, .. } => *size,
}
}
}
#[derive(Debug)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct CachedTask {
pub target_kind: RenderTargetKind,
}
#[derive(Debug)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct CacheMaskTask {
pub actual_rect: DeviceRect,
pub root_spatial_node_index: SpatialNodeIndex,
pub clip_node_range: ClipNodeRange,
pub device_pixel_scale: DevicePixelScale,
pub clear_to_one: bool,
}
#[derive(Debug)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct ClipRegionTask {
pub local_pos: LayoutPoint,
pub device_pixel_scale: DevicePixelScale,
pub clip_data: ClipData,
pub clear_to_one: bool,
}
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct EmptyTask {
pub content_origin: DevicePoint,
pub device_pixel_scale: DevicePixelScale,
pub raster_spatial_node_index: SpatialNodeIndex,
}
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct PrimTask {
pub pattern: PatternKind,
pub pattern_input: PatternShaderInput,
pub device_pixel_scale: DevicePixelScale,
pub content_origin: DevicePoint,
pub prim_address_f: GpuBufferAddress,
pub raster_spatial_node_index: SpatialNodeIndex,
pub transform_id: TransformPaletteId,
pub edge_flags: EdgeAaSegmentMask,
pub quad_flags: QuadFlags,
pub prim_needs_scissor_rect: bool,
pub texture_input: RenderTaskId,
}
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct TileCompositeTask {
pub clear_color: ColorF,
pub scissor_rect: DeviceIntRect,
pub valid_rect: DeviceIntRect,
pub task_id: Option<RenderTaskId>,
pub sub_rect_offset: DeviceIntVector2D,
}
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct PictureTask {
pub can_merge: bool,
pub content_origin: DevicePoint,
pub surface_spatial_node_index: SpatialNodeIndex,
pub raster_spatial_node_index: SpatialNodeIndex,
pub device_pixel_scale: DevicePixelScale,
pub clear_color: Option<ColorF>,
pub scissor_rect: Option<DeviceIntRect>,
pub valid_rect: Option<DeviceIntRect>,
pub cmd_buffer_index: CommandBufferIndex,
pub resolve_op: Option<ResolveOp>,
pub can_use_shared_surface: bool,
}
impl PictureTask {
/// Copy an existing picture task, but set a new command buffer for it to build in to.
/// Used for pictures that are split between render tasks (e.g. pre/post a backdrop
/// filter). Subsequent picture tasks never have a clear color as they are by definition
/// going to write to an existing target
pub fn duplicate(
&self,
cmd_buffer_index: CommandBufferIndex,
) -> Self {
assert_eq!(self.resolve_op, None);
PictureTask {
clear_color: None,
cmd_buffer_index,
resolve_op: None,
can_use_shared_surface: false,
..*self
}
}
}
#[derive(Debug)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct BlurTask {
pub blur_std_deviation: f32,
pub target_kind: RenderTargetKind,
pub blur_region: DeviceIntSize,
}
impl BlurTask {
// In order to do the blur down-scaling passes without introducing errors, we need the
// source of each down-scale pass to be a multuple of two. If need be, this inflates
// the source size so that each down-scale pass will sample correctly.
pub fn adjusted_blur_source_size(original_size: DeviceSize, mut std_dev: DeviceSize) -> DeviceIntSize {
let mut adjusted_size = original_size;
let mut scale_factor = 1.0;
while std_dev.width > MAX_BLUR_STD_DEVIATION && std_dev.height > MAX_BLUR_STD_DEVIATION {
if adjusted_size.width < MIN_DOWNSCALING_RT_SIZE as f32 ||
adjusted_size.height < MIN_DOWNSCALING_RT_SIZE as f32 {
break;
}
std_dev = std_dev * 0.5;
scale_factor *= 2.0;
adjusted_size = (original_size.to_f32() / scale_factor).ceil();
}
(adjusted_size * scale_factor).round().to_i32()
}
}
#[derive(Debug)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct ScalingTask {
pub target_kind: RenderTargetKind,
pub padding: DeviceIntSideOffsets,
}
#[derive(Debug)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct BorderTask {
pub instances: Vec<BorderInstance>,
}
#[derive(Debug)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct BlitTask {
pub source: RenderTaskId,
// Normalized rect within the source task to blit from
pub source_rect: DeviceIntRect,
}
#[derive(Debug)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct LineDecorationTask {
pub wavy_line_thickness: f32,
pub style: LineStyle,
pub orientation: LineOrientation,
pub local_size: LayoutSize,
}
#[derive(Debug)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum SvgFilterInfo {
Blend(MixBlendMode),
Flood(ColorF),
LinearToSrgb,
SrgbToLinear,
Opacity(f32),
ColorMatrix(Box<[f32; 20]>),
DropShadow(ColorF),
Offset(DeviceVector2D),
ComponentTransfer(SFilterData),
Composite(CompositeOperator),
// TODO: This is used as a hack to ensure that a blur task's input is always in the blur's previous pass.
Identity,
}
#[derive(Debug)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct SvgFilterTask {
pub info: SvgFilterInfo,
pub extra_gpu_cache_handle: Option<GpuCacheHandle>,
}
#[derive(Debug)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct SVGFEFilterTask {
pub node: FilterGraphNode,
pub op: FilterGraphOp,
pub content_origin: DevicePoint,
pub extra_gpu_cache_handle: Option<GpuCacheHandle>,
}
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct ReadbackTask {
// The offset of the rect that needs to be read back, in the
// device space of the surface that will be read back from.
// If this is None, there is no readback surface available
// and this is a dummy (empty) readback.
pub readback_origin: Option<DevicePoint>,
}
#[derive(Debug)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct RenderTaskData {
pub data: [f32; FLOATS_PER_RENDER_TASK_INFO],
}
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum RenderTaskKind {
Image(ImageRequest),
Cached(CachedTask),
Picture(PictureTask),
CacheMask(CacheMaskTask),
ClipRegion(ClipRegionTask),
VerticalBlur(BlurTask),
HorizontalBlur(BlurTask),
Readback(ReadbackTask),
Scaling(ScalingTask),
Blit(BlitTask),
Border(BorderTask),
LineDecoration(LineDecorationTask),
FastLinearGradient(FastLinearGradientTask),
LinearGradient(LinearGradientTask),
RadialGradient(RadialGradientTask),
ConicGradient(ConicGradientTask),
SvgFilter(SvgFilterTask),
SVGFENode(SVGFEFilterTask),
TileComposite(TileCompositeTask),
Prim(PrimTask),
Empty(EmptyTask),
#[cfg(test)]
Test(RenderTargetKind),
}
impl RenderTaskKind {
pub fn is_a_rendering_operation(&self) -> bool {
match self {
&RenderTaskKind::Image(..) => false,
&RenderTaskKind::Cached(..) => false,
_ => true,
}
}
/// Whether this task can be allocated on a shared render target surface
pub fn can_use_shared_surface(&self) -> bool {
match self {
&RenderTaskKind::Picture(ref info) => info.can_use_shared_surface,
_ => true,
}
}
pub fn should_advance_pass(&self) -> bool {
match self {
&RenderTaskKind::Image(..) => false,
&RenderTaskKind::Cached(..) => false,
_ => true,
}
}
pub fn as_str(&self) -> &'static str {
match *self {
RenderTaskKind::Image(..) => "Image",
RenderTaskKind::Cached(..) => "Cached",
RenderTaskKind::Picture(..) => "Picture",
RenderTaskKind::CacheMask(..) => "CacheMask",
RenderTaskKind::ClipRegion(..) => "ClipRegion",
RenderTaskKind::VerticalBlur(..) => "VerticalBlur",
RenderTaskKind::HorizontalBlur(..) => "HorizontalBlur",
RenderTaskKind::Readback(..) => "Readback",
RenderTaskKind::Scaling(..) => "Scaling",
RenderTaskKind::Blit(..) => "Blit",
RenderTaskKind::Border(..) => "Border",
RenderTaskKind::LineDecoration(..) => "LineDecoration",
RenderTaskKind::FastLinearGradient(..) => "FastLinearGradient",
RenderTaskKind::LinearGradient(..) => "LinearGradient",
RenderTaskKind::RadialGradient(..) => "RadialGradient",
RenderTaskKind::ConicGradient(..) => "ConicGradient",
RenderTaskKind::SvgFilter(..) => "SvgFilter",
RenderTaskKind::SVGFENode(..) => "SVGFENode",
RenderTaskKind::TileComposite(..) => "TileComposite",
RenderTaskKind::Prim(..) => "Prim",
RenderTaskKind::Empty(..) => "Empty",
#[cfg(test)]
RenderTaskKind::Test(..) => "Test",
}
}
pub fn target_kind(&self) -> RenderTargetKind {
match *self {
RenderTaskKind::Image(..) |
RenderTaskKind::LineDecoration(..) |
RenderTaskKind::Readback(..) |
RenderTaskKind::Border(..) |
RenderTaskKind::FastLinearGradient(..) |
RenderTaskKind::LinearGradient(..) |
RenderTaskKind::RadialGradient(..) |
RenderTaskKind::ConicGradient(..) |
RenderTaskKind::Picture(..) |
RenderTaskKind::Blit(..) |
RenderTaskKind::TileComposite(..) |
RenderTaskKind::Prim(..) |
RenderTaskKind::SvgFilter(..) => {
RenderTargetKind::Color
}
RenderTaskKind::SVGFENode(..) => {
RenderTargetKind::Color
}
RenderTaskKind::ClipRegion(..) |
RenderTaskKind::CacheMask(..) |
RenderTaskKind::Empty(..) => {
RenderTargetKind::Alpha
}
RenderTaskKind::VerticalBlur(ref task_info) |
RenderTaskKind::HorizontalBlur(ref task_info) => {
task_info.target_kind
}
RenderTaskKind::Scaling(ref task_info) => {
task_info.target_kind
}
RenderTaskKind::Cached(ref task_info) => {
task_info.target_kind
}
#[cfg(test)]
RenderTaskKind::Test(kind) => kind,
}
}
pub fn new_tile_composite(
sub_rect_offset: DeviceIntVector2D,
scissor_rect: DeviceIntRect,
valid_rect: DeviceIntRect,
clear_color: ColorF,
) -> Self {
RenderTaskKind::TileComposite(TileCompositeTask {
task_id: None,
sub_rect_offset,
scissor_rect,
valid_rect,
clear_color,
})
}
pub fn new_picture(
size: DeviceIntSize,
needs_scissor_rect: bool,
content_origin: DevicePoint,
surface_spatial_node_index: SpatialNodeIndex,
raster_spatial_node_index: SpatialNodeIndex,
device_pixel_scale: DevicePixelScale,
scissor_rect: Option<DeviceIntRect>,
valid_rect: Option<DeviceIntRect>,
clear_color: Option<ColorF>,
cmd_buffer_index: CommandBufferIndex,
can_use_shared_surface: bool,
) -> Self {
render_task_sanity_check(&size);
RenderTaskKind::Picture(PictureTask {
content_origin,
can_merge: !needs_scissor_rect,
surface_spatial_node_index,
raster_spatial_node_index,
device_pixel_scale,
scissor_rect,
valid_rect,
clear_color,
cmd_buffer_index,
resolve_op: None,
can_use_shared_surface,
})
}
pub fn new_prim(
pattern: PatternKind,
pattern_input: PatternShaderInput,
raster_spatial_node_index: SpatialNodeIndex,
device_pixel_scale: DevicePixelScale,
content_origin: DevicePoint,
prim_address_f: GpuBufferAddress,
transform_id: TransformPaletteId,
edge_flags: EdgeAaSegmentMask,
quad_flags: QuadFlags,
prim_needs_scissor_rect: bool,
texture_input: RenderTaskId,
) -> Self {
RenderTaskKind::Prim(PrimTask {
pattern,
pattern_input,
raster_spatial_node_index,
device_pixel_scale,
content_origin,
prim_address_f,
transform_id,
edge_flags,
quad_flags,
prim_needs_scissor_rect,
texture_input,
})
}
pub fn new_readback(
readback_origin: Option<DevicePoint>,
) -> Self {
RenderTaskKind::Readback(
ReadbackTask {
readback_origin,
}
)
}
pub fn new_line_decoration(
style: LineStyle,
orientation: LineOrientation,
wavy_line_thickness: f32,
local_size: LayoutSize,
) -> Self {
RenderTaskKind::LineDecoration(LineDecorationTask {
style,
orientation,
wavy_line_thickness,
local_size,
})
}
pub fn new_border_segment(
instances: Vec<BorderInstance>,
) -> Self {
RenderTaskKind::Border(BorderTask {
instances,
})
}
pub fn new_rounded_rect_mask(
local_pos: LayoutPoint,
clip_data: ClipData,
device_pixel_scale: DevicePixelScale,
fb_config: &FrameBuilderConfig,
) -> Self {
RenderTaskKind::ClipRegion(ClipRegionTask {
local_pos,
device_pixel_scale,
clip_data,
clear_to_one: fb_config.gpu_supports_fast_clears,
})
}
pub fn new_mask(
outer_rect: DeviceIntRect,
clip_node_range: ClipNodeRange,
root_spatial_node_index: SpatialNodeIndex,
clip_store: &mut ClipStore,
gpu_cache: &mut GpuCache,
gpu_buffer_builder: &mut GpuBufferBuilderF,
resource_cache: &mut ResourceCache,
rg_builder: &mut RenderTaskGraphBuilder,
clip_data_store: &mut ClipDataStore,
device_pixel_scale: DevicePixelScale,
fb_config: &FrameBuilderConfig,
surface_builder: &mut SurfaceBuilder,
) -> RenderTaskId {
// Step through the clip sources that make up this mask. If we find
// any box-shadow clip sources, request that image from the render
// task cache. This allows the blurred box-shadow rect to be cached
// in the texture cache across frames.
// TODO(gw): Consider moving this logic outside this function, especially
// as we add more clip sources that depend on render tasks.
// TODO(gw): If this ever shows up in a profile, we could pre-calculate
// whether a ClipSources contains any box-shadows and skip
// this iteration for the majority of cases.
let task_size = outer_rect.size();
// If we have a potentially tiled clip mask, clear the mask area first. Otherwise,
// the first (primary) clip mask will overwrite all the clip mask pixels with
// blending disabled to set to the initial value.
let clip_task_id = rg_builder.add().init(
RenderTask::new_dynamic(
task_size,
RenderTaskKind::CacheMask(CacheMaskTask {
actual_rect: outer_rect.to_f32(),
clip_node_range,
root_spatial_node_index,
device_pixel_scale,
clear_to_one: fb_config.gpu_supports_fast_clears,
}),
)
);
for i in 0 .. clip_node_range.count {
let clip_instance = clip_store.get_instance_from_range(&clip_node_range, i);
let clip_node = &mut clip_data_store[clip_instance.handle];
match clip_node.item.kind {
ClipItemKind::BoxShadow { ref mut source } => {
let (cache_size, cache_key) = source.cache_key
.as_ref()
.expect("bug: no cache key set")
.clone();
let blur_radius_dp = cache_key.blur_radius_dp as f32;
let device_pixel_scale = DevicePixelScale::new(cache_key.device_pixel_scale.to_f32_px());
// Request a cacheable render task with a blurred, minimal
// sized box-shadow rect.
source.render_task = Some(resource_cache.request_render_task(
RenderTaskCacheKey {
size: cache_size,
kind: RenderTaskCacheKeyKind::BoxShadow(cache_key),
},
gpu_cache,
gpu_buffer_builder,
rg_builder,
None,
false,
RenderTaskParent::RenderTask(clip_task_id),
surface_builder,
|rg_builder, _| {
let clip_data = ClipData::rounded_rect(
source.minimal_shadow_rect.size(),
&source.shadow_radius,
ClipMode::Clip,
);
// Draw the rounded rect.
let mask_task_id = rg_builder.add().init(RenderTask::new_dynamic(
cache_size,
RenderTaskKind::new_rounded_rect_mask(
source.minimal_shadow_rect.min,
clip_data,
device_pixel_scale,
fb_config,
),
));
// Blur it
RenderTask::new_blur(
DeviceSize::new(blur_radius_dp, blur_radius_dp),
mask_task_id,
rg_builder,
RenderTargetKind::Alpha,
None,
cache_size,
)
}
));
}
ClipItemKind::Rectangle { .. } |
ClipItemKind::RoundedRectangle { .. } |
ClipItemKind::Image { .. } => {}
}
}
clip_task_id
}
// Write (up to) 8 floats of data specific to the type
// of render task that is provided to the GPU shaders
// via a vertex texture.
pub fn write_task_data(
&self,
target_rect: DeviceIntRect,
) -> RenderTaskData {
// NOTE: The ordering and layout of these structures are
// required to match both the GPU structures declared
// in prim_shared.glsl, and also the uses in submit_batch()
// in renderer.rs.
// TODO(gw): Maybe there's a way to make this stuff a bit
// more type-safe. Although, it will always need
// to be kept in sync with the GLSL code anyway.
let data = match self {
RenderTaskKind::Picture(ref task) => {
// Note: has to match `PICTURE_TYPE_*` in shaders
[
task.device_pixel_scale.0,
task.content_origin.x,
task.content_origin.y,
0.0,
]
}
RenderTaskKind::Prim(ref task) => {
[
// NOTE: This must match the render task data format for Picture tasks currently
task.device_pixel_scale.0,
task.content_origin.x,
task.content_origin.y,
0.0,
]
}
RenderTaskKind::Empty(ref task) => {
[
// NOTE: This must match the render task data format for Picture tasks currently
task.device_pixel_scale.0,
task.content_origin.x,
task.content_origin.y,
0.0,
]
}
RenderTaskKind::CacheMask(ref task) => {
[
task.device_pixel_scale.0,
task.actual_rect.min.x,
task.actual_rect.min.y,
0.0,
]
}
RenderTaskKind::ClipRegion(ref task) => {
[
task.device_pixel_scale.0,
0.0,
0.0,
0.0,
]
}
RenderTaskKind::VerticalBlur(_) |
RenderTaskKind::HorizontalBlur(_) => {
// TODO(gw): Make this match Picture tasks so that we can draw
// sub-passes on them to apply box-shadow masks.
[
0.0,
0.0,
0.0,
0.0,
]
}
RenderTaskKind::Image(..) |
RenderTaskKind::Cached(..) |
RenderTaskKind::Readback(..) |
RenderTaskKind::Scaling(..) |
RenderTaskKind::Border(..) |
RenderTaskKind::LineDecoration(..) |
RenderTaskKind::FastLinearGradient(..) |
RenderTaskKind::LinearGradient(..) |
RenderTaskKind::RadialGradient(..) |
RenderTaskKind::ConicGradient(..) |
RenderTaskKind::TileComposite(..) |
RenderTaskKind::Blit(..) => {
[0.0; 4]
}
RenderTaskKind::SvgFilter(ref task) => {
match task.info {
SvgFilterInfo::Opacity(opacity) => [opacity, 0.0, 0.0, 0.0],
SvgFilterInfo::Offset(offset) => [offset.x, offset.y, 0.0, 0.0],
_ => [0.0; 4]
}
}
RenderTaskKind::SVGFENode(_task) => {
// we don't currently use this for SVGFE filters.
// see SVGFEFilterInstance instead
[0.0; 4]
}
#[cfg(test)]
RenderTaskKind::Test(..) => {
[0.0; 4]
}
};
RenderTaskData {
data: [
target_rect.min.x as f32,
target_rect.min.y as f32,
target_rect.max.x as f32,
target_rect.max.y as f32,
data[0],
data[1],
data[2],
data[3],
]
}
}
pub fn write_gpu_blocks(
&mut self,
gpu_cache: &mut GpuCache,
) {
match self {
RenderTaskKind::SvgFilter(ref mut filter_task) => {
match filter_task.info {
SvgFilterInfo::ColorMatrix(ref matrix) => {
let handle = filter_task.extra_gpu_cache_handle.get_or_insert_with(GpuCacheHandle::new);
if let Some(mut request) = gpu_cache.request(handle) {
for i in 0..5 {
request.push([matrix[i*4], matrix[i*4+1], matrix[i*4+2], matrix[i*4+3]]);
}
}
}
SvgFilterInfo::DropShadow(color) |
SvgFilterInfo::Flood(color) => {
let handle = filter_task.extra_gpu_cache_handle.get_or_insert_with(GpuCacheHandle::new);
if let Some(mut request) = gpu_cache.request(handle) {
request.push(color.to_array());
}
}
SvgFilterInfo::ComponentTransfer(ref data) => {
let handle = filter_task.extra_gpu_cache_handle.get_or_insert_with(GpuCacheHandle::new);
if let Some(request) = gpu_cache.request(handle) {
data.update(request);
}
}
SvgFilterInfo::Composite(ref operator) => {
if let CompositeOperator::Arithmetic(k_vals) = operator {
let handle = filter_task.extra_gpu_cache_handle.get_or_insert_with(GpuCacheHandle::new);
if let Some(mut request) = gpu_cache.request(handle) {
request.push(*k_vals);
}
}
}
_ => {},
}
}
RenderTaskKind::SVGFENode(ref mut filter_task) => {
match filter_task.op {
FilterGraphOp::SVGFEBlendDarken => {}
FilterGraphOp::SVGFEBlendLighten => {}
FilterGraphOp::SVGFEBlendMultiply => {}
FilterGraphOp::SVGFEBlendNormal => {}
FilterGraphOp::SVGFEBlendScreen => {}
FilterGraphOp::SVGFEBlendOverlay => {}
FilterGraphOp::SVGFEBlendColorDodge => {}
FilterGraphOp::SVGFEBlendColorBurn => {}
FilterGraphOp::SVGFEBlendHardLight => {}
FilterGraphOp::SVGFEBlendSoftLight => {}
FilterGraphOp::SVGFEBlendDifference => {}
FilterGraphOp::SVGFEBlendExclusion => {}
FilterGraphOp::SVGFEBlendHue => {}
FilterGraphOp::SVGFEBlendSaturation => {}
FilterGraphOp::SVGFEBlendColor => {}
FilterGraphOp::SVGFEBlendLuminosity => {}
FilterGraphOp::SVGFEColorMatrix{values: matrix} => {
let handle = filter_task.extra_gpu_cache_handle.get_or_insert_with(GpuCacheHandle::new);
if let Some(mut request) = gpu_cache.request(handle) {
for i in 0..5 {
request.push([matrix[i*4], matrix[i*4+1], matrix[i*4+2], matrix[i*4+3]]);
}
}
}
FilterGraphOp::SVGFEComponentTransfer => unreachable!(),
FilterGraphOp::SVGFEComponentTransferInterned{..} => {}
FilterGraphOp::SVGFECompositeArithmetic{k1, k2, k3, k4} => {
let handle = filter_task.extra_gpu_cache_handle.get_or_insert_with(GpuCacheHandle::new);
if let Some(mut request) = gpu_cache.request(handle) {
request.push([k1, k2, k3, k4]);
}
}
FilterGraphOp::SVGFECompositeATop => {}
FilterGraphOp::SVGFECompositeIn => {}
FilterGraphOp::SVGFECompositeLighter => {}
FilterGraphOp::SVGFECompositeOut => {}
FilterGraphOp::SVGFECompositeOver => {}
FilterGraphOp::SVGFECompositeXOR => {}
FilterGraphOp::SVGFEConvolveMatrixEdgeModeDuplicate{order_x, order_y, kernel, divisor, bias, target_x, target_y, kernel_unit_length_x, kernel_unit_length_y, preserve_alpha} |
FilterGraphOp::SVGFEConvolveMatrixEdgeModeNone{order_x, order_y, kernel, divisor, bias, target_x, target_y, kernel_unit_length_x, kernel_unit_length_y, preserve_alpha} |
FilterGraphOp::SVGFEConvolveMatrixEdgeModeWrap{order_x, order_y, kernel, divisor, bias, target_x, target_y, kernel_unit_length_x, kernel_unit_length_y, preserve_alpha} => {
let handle = filter_task.extra_gpu_cache_handle.get_or_insert_with(GpuCacheHandle::new);
if let Some(mut request) = gpu_cache.request(handle) {
request.push([-target_x as f32, -target_y as f32, order_x as f32, order_y as f32]);
request.push([kernel_unit_length_x as f32, kernel_unit_length_y as f32, 1.0 / divisor, bias]);
assert!(SVGFE_CONVOLVE_VALUES_LIMIT == 25);
request.push([kernel[0], kernel[1], kernel[2], kernel[3]]);
request.push([kernel[4], kernel[5], kernel[6], kernel[7]]);
request.push([kernel[8], kernel[9], kernel[10], kernel[11]]);
request.push([kernel[12], kernel[13], kernel[14], kernel[15]]);
request.push([kernel[16], kernel[17], kernel[18], kernel[19]]);
request.push([kernel[20], 0.0, 0.0, preserve_alpha as f32]);
}
}
FilterGraphOp::SVGFEDiffuseLightingDistant{..} => {}
FilterGraphOp::SVGFEDiffuseLightingPoint{..} => {}
FilterGraphOp::SVGFEDiffuseLightingSpot{..} => {}
FilterGraphOp::SVGFEDisplacementMap{scale, x_channel_selector, y_channel_selector} => {
let handle = filter_task.extra_gpu_cache_handle.get_or_insert_with(GpuCacheHandle::new);
if let Some(mut request) = gpu_cache.request(handle) {
request.push([x_channel_selector as f32, y_channel_selector as f32, scale, 0.0]);
}
}
FilterGraphOp::SVGFEDropShadow{color, ..} |
FilterGraphOp::SVGFEFlood{color} => {
let handle = filter_task.extra_gpu_cache_handle.get_or_insert_with(GpuCacheHandle::new);
if let Some(mut request) = gpu_cache.request(handle) {
request.push(color.to_array());
}
}
FilterGraphOp::SVGFEGaussianBlur{..} => {}
FilterGraphOp::SVGFEIdentity => {}
FilterGraphOp::SVGFEImage{..} => {}
FilterGraphOp::SVGFEMorphologyDilate{radius_x, radius_y} |
FilterGraphOp::SVGFEMorphologyErode{radius_x, radius_y} => {
let handle = filter_task.extra_gpu_cache_handle.get_or_insert_with(GpuCacheHandle::new);
if let Some(mut request) = gpu_cache.request(handle) {
request.push([radius_x, radius_y, 0.0, 0.0]);
}
}
FilterGraphOp::SVGFEOpacity{..} => {}
FilterGraphOp::SVGFESourceAlpha => {}
FilterGraphOp::SVGFESourceGraphic => {}
FilterGraphOp::SVGFESpecularLightingDistant{..} => {}
FilterGraphOp::SVGFESpecularLightingPoint{..} => {}
FilterGraphOp::SVGFESpecularLightingSpot{..} => {}
FilterGraphOp::SVGFETile => {}
FilterGraphOp::SVGFEToAlpha{..} => {}
FilterGraphOp::SVGFETurbulenceWithFractalNoiseWithNoStitching{..} => {}
FilterGraphOp::SVGFETurbulenceWithFractalNoiseWithStitching{..} => {}
FilterGraphOp::SVGFETurbulenceWithTurbulenceNoiseWithNoStitching{..} => {}
FilterGraphOp::SVGFETurbulenceWithTurbulenceNoiseWithStitching{..} => {}
}
}
_ => {}
}
}
}
/// In order to avoid duplicating the down-scaling and blur passes when a picture has several blurs,
/// we use a local (primitive-level) cache of the render tasks generated for a single shadowed primitive
/// in a single frame.
pub type BlurTaskCache = FastHashMap<BlurTaskKey, RenderTaskId>;
/// Since we only use it within a single primitive, the key only needs to contain the down-scaling level
/// and the blur std deviation.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub enum BlurTaskKey {
DownScale(u32),
Blur { downscale_level: u32, stddev_x: u32, stddev_y: u32 },
}
impl BlurTaskKey {
fn downscale_and_blur(downscale_level: u32, blur_stddev: DeviceSize) -> Self {
// Quantise the std deviations and store it as integers to work around
// Eq and Hash's f32 allergy.
// The blur radius is rounded before RenderTask::new_blur so we don't need
// a lot of precision.
const QUANTIZATION_FACTOR: f32 = 1024.0;
let stddev_x = (blur_stddev.width * QUANTIZATION_FACTOR) as u32;
let stddev_y = (blur_stddev.height * QUANTIZATION_FACTOR) as u32;
BlurTaskKey::Blur { downscale_level, stddev_x, stddev_y }
}
}
// The majority of render tasks have 0, 1 or 2 dependencies, except for pictures that
// typically have dozens to hundreds of dependencies. SmallVec with 2 inline elements
// avoids many tiny heap allocations in pages with a lot of text shadows and other
// types of render tasks.
pub type TaskDependencies = SmallVec<[RenderTaskId;2]>;
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct MaskSubPass {
pub clip_node_range: ClipNodeRange,
pub prim_spatial_node_index: SpatialNodeIndex,
pub prim_address_f: GpuBufferAddress,
}
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum SubPass {
Masks {
masks: MaskSubPass,
},
}
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct RenderTask {
pub location: RenderTaskLocation,
pub children: TaskDependencies,
pub kind: RenderTaskKind,
pub sub_pass: Option<SubPass>,
// TODO(gw): These fields and perhaps others can become private once the
// frame_graph / render_task source files are unified / cleaned up.
pub free_after: PassId,
pub render_on: PassId,
/// The gpu cache handle for the render task's destination rect.
///
/// Will be set to None if the render task is cached, in which case the texture cache
/// manages the handle.
pub uv_rect_handle: GpuCacheHandle,
pub cache_handle: Option<RenderTaskCacheEntryHandle>,
uv_rect_kind: UvRectKind,
}
impl RenderTask {
pub fn new(
location: RenderTaskLocation,
kind: RenderTaskKind,
) -> Self {
render_task_sanity_check(&location.size());
RenderTask {
location,
children: TaskDependencies::new(),
kind,
free_after: PassId::MAX,
render_on: PassId::MIN,
uv_rect_handle: GpuCacheHandle::new(),
uv_rect_kind: UvRectKind::Rect,
cache_handle: None,
sub_pass: None,
}
}
pub fn new_dynamic(
size: DeviceIntSize,
kind: RenderTaskKind,
) -> Self {
assert!(!size.is_empty(), "Bad {} render task size: {:?}", kind.as_str(), size);
RenderTask::new(
RenderTaskLocation::Unallocated { size },
kind,
)
}
pub fn with_uv_rect_kind(mut self, uv_rect_kind: UvRectKind) -> Self {
self.uv_rect_kind = uv_rect_kind;
self
}
pub fn new_image(
size: DeviceIntSize,
request: ImageRequest,
) -> Self {
// Note: this is a special constructor for image render tasks that does not
// do the render task size sanity check. This is because with SWGL we purposefully
// avoid tiling large images. There is no upload with SWGL so whatever was
// successfully allocated earlier will be what shaders read, regardless of the size
// and copying into tiles would only slow things down.
// As a result we can run into very large images being added to the frame graph
// (this is covered by a few reftests on the CI).
RenderTask {
location: RenderTaskLocation::CacheRequest { size, },
children: TaskDependencies::new(),
kind: RenderTaskKind::Image(request),
free_after: PassId::MAX,
render_on: PassId::MIN,
uv_rect_handle: GpuCacheHandle::new(),
uv_rect_kind: UvRectKind::Rect,
cache_handle: None,
sub_pass: None,
}
}
#[cfg(test)]
pub fn new_test(
location: RenderTaskLocation,
target: RenderTargetKind,
) -> Self {
RenderTask {
location,
children: TaskDependencies::new(),
kind: RenderTaskKind::Test(target),
free_after: PassId::MAX,
render_on: PassId::MIN,
uv_rect_handle: GpuCacheHandle::new(),
uv_rect_kind: UvRectKind::Rect,
cache_handle: None,
sub_pass: None,
}
}
pub fn new_blit(
size: DeviceIntSize,
source: RenderTaskId,
source_rect: DeviceIntRect,
rg_builder: &mut RenderTaskGraphBuilder,
) -> RenderTaskId {
// If this blit uses a render task as a source,
// ensure it's added as a child task. This will
// ensure it gets allocated in the correct pass
// and made available as an input when this task
// executes.
let blit_task_id = rg_builder.add().init(RenderTask::new_dynamic(
size,
RenderTaskKind::Blit(BlitTask { source, source_rect }),
));
rg_builder.add_dependency(blit_task_id, source);
blit_task_id
}
// Construct a render task to apply a blur to a primitive.
// The render task chain that is constructed looks like:
//
// PrimitiveCacheTask: Draw the primitives.
// ^
// |
// DownscalingTask(s): Each downscaling task reduces the size of render target to
// ^ half. Also reduce the std deviation to half until the std
// | deviation less than 4.0.
// |
// |
// VerticalBlurTask: Apply the separable vertical blur to the primitive.
// ^
// |
// HorizontalBlurTask: Apply the separable horizontal blur to the vertical blur.
// |
// +---- This is stored as the input task to the primitive shader.
//
pub fn new_blur(
blur_std_deviation: DeviceSize,
src_task_id: RenderTaskId,
rg_builder: &mut RenderTaskGraphBuilder,
target_kind: RenderTargetKind,
mut blur_cache: Option<&mut BlurTaskCache>,
blur_region: DeviceIntSize,
) -> RenderTaskId {
// Adjust large std deviation value.
let mut adjusted_blur_std_deviation = blur_std_deviation;
let (blur_target_size, uv_rect_kind) = {
let src_task = rg_builder.get_task(src_task_id);
(src_task.location.size(), src_task.uv_rect_kind())
};
let mut adjusted_blur_target_size = blur_target_size;
let mut downscaling_src_task_id = src_task_id;
let mut scale_factor = 1.0;
let mut n_downscales = 1;
while adjusted_blur_std_deviation.width > MAX_BLUR_STD_DEVIATION &&
adjusted_blur_std_deviation.height > MAX_BLUR_STD_DEVIATION {
if adjusted_blur_target_size.width < MIN_DOWNSCALING_RT_SIZE ||
adjusted_blur_target_size.height < MIN_DOWNSCALING_RT_SIZE {
break;
}
adjusted_blur_std_deviation = adjusted_blur_std_deviation * 0.5;
scale_factor *= 2.0;
adjusted_blur_target_size = (blur_target_size.to_f32() / scale_factor).to_i32();
let cached_task = match blur_cache {
Some(ref mut cache) => cache.get(&BlurTaskKey::DownScale(n_downscales)).cloned(),
None => None,
};
downscaling_src_task_id = cached_task.unwrap_or_else(|| {
RenderTask::new_scaling(
downscaling_src_task_id,
rg_builder,
target_kind,
adjusted_blur_target_size,
)
});
if let Some(ref mut cache) = blur_cache {
cache.insert(BlurTaskKey::DownScale(n_downscales), downscaling_src_task_id);
}
n_downscales += 1;
}
let blur_key = BlurTaskKey::downscale_and_blur(n_downscales, adjusted_blur_std_deviation);
let cached_task = match blur_cache {
Some(ref mut cache) => cache.get(&blur_key).cloned(),
None => None,
};
let blur_region = blur_region / (scale_factor as i32);
let blur_task_id = cached_task.unwrap_or_else(|| {
let blur_task_v = rg_builder.add().init(RenderTask::new_dynamic(
adjusted_blur_target_size,
RenderTaskKind::VerticalBlur(BlurTask {
blur_std_deviation: adjusted_blur_std_deviation.height,
target_kind,
blur_region,
}),
).with_uv_rect_kind(uv_rect_kind));
rg_builder.add_dependency(blur_task_v, downscaling_src_task_id);
let task_id = rg_builder.add().init(RenderTask::new_dynamic(
adjusted_blur_target_size,
RenderTaskKind::HorizontalBlur(BlurTask {
blur_std_deviation: adjusted_blur_std_deviation.width,
target_kind,
blur_region,
}),
).with_uv_rect_kind(uv_rect_kind));
rg_builder.add_dependency(task_id, blur_task_v);
task_id
});
if let Some(ref mut cache) = blur_cache {
cache.insert(blur_key, blur_task_id);
}
blur_task_id
}
pub fn new_scaling(
src_task_id: RenderTaskId,
rg_builder: &mut RenderTaskGraphBuilder,
target_kind: RenderTargetKind,
size: DeviceIntSize,
) -> RenderTaskId {
Self::new_scaling_with_padding(
src_task_id,
rg_builder,
target_kind,
size,
DeviceIntSideOffsets::zero(),
)
}
pub fn new_scaling_with_padding(
source: RenderTaskId,
rg_builder: &mut RenderTaskGraphBuilder,
target_kind: RenderTargetKind,
padded_size: DeviceIntSize,
padding: DeviceIntSideOffsets,
) -> RenderTaskId {
let uv_rect_kind = rg_builder.get_task(source).uv_rect_kind();
let task_id = rg_builder.add().init(
RenderTask::new_dynamic(
padded_size,
RenderTaskKind::Scaling(ScalingTask {
target_kind,
padding,
}),
).with_uv_rect_kind(uv_rect_kind)
);
rg_builder.add_dependency(task_id, source);
task_id
}
pub fn new_svg_filter(
filter_primitives: &[FilterPrimitive],
filter_datas: &[SFilterData],
rg_builder: &mut RenderTaskGraphBuilder,
content_size: DeviceIntSize,
uv_rect_kind: UvRectKind,
original_task_id: RenderTaskId,
device_pixel_scale: DevicePixelScale,
) -> RenderTaskId {
if filter_primitives.is_empty() {
return original_task_id;
}
// Resolves the input to a filter primitive
let get_task_input = |
input: &FilterPrimitiveInput,
filter_primitives: &[FilterPrimitive],
rg_builder: &mut RenderTaskGraphBuilder,
cur_index: usize,
outputs: &[RenderTaskId],
original: RenderTaskId,
color_space: ColorSpace,
| {
// TODO(cbrewster): Not sure we can assume that the original input is sRGB.
let (mut task_id, input_color_space) = match input.to_index(cur_index) {
Some(index) => (outputs[index], filter_primitives[index].color_space),
None => (original, ColorSpace::Srgb),
};
match (input_color_space, color_space) {
(ColorSpace::Srgb, ColorSpace::LinearRgb) => {
task_id = RenderTask::new_svg_filter_primitive(
smallvec![task_id],
content_size,
uv_rect_kind,
SvgFilterInfo::SrgbToLinear,
rg_builder,
);
},
(ColorSpace::LinearRgb, ColorSpace::Srgb) => {
task_id = RenderTask::new_svg_filter_primitive(
smallvec![task_id],
content_size,
uv_rect_kind,
SvgFilterInfo::LinearToSrgb,
rg_builder,
);
},
_ => {},
}
task_id
};
let mut outputs = vec![];
let mut cur_filter_data = 0;
for (cur_index, primitive) in filter_primitives.iter().enumerate() {
let render_task_id = match primitive.kind {
FilterPrimitiveKind::Identity(ref identity) => {
// Identity does not create a task, it provides its input's render task
get_task_input(
&identity.input,
filter_primitives,
rg_builder,
cur_index,
&outputs,
original_task_id,
primitive.color_space
)
}
FilterPrimitiveKind::Blend(ref blend) => {
let input_1_task_id = get_task_input(
&blend.input1,
filter_primitives,
rg_builder,
cur_index,
&outputs,
original_task_id,
primitive.color_space
);
let input_2_task_id = get_task_input(
&blend.input2,
filter_primitives,
rg_builder,
cur_index,
&outputs,
original_task_id,
primitive.color_space
);
RenderTask::new_svg_filter_primitive(
smallvec![input_1_task_id, input_2_task_id],
content_size,
uv_rect_kind,
SvgFilterInfo::Blend(blend.mode),
rg_builder,
)
},
FilterPrimitiveKind::Flood(ref flood) => {
RenderTask::new_svg_filter_primitive(
smallvec![],
content_size,
uv_rect_kind,
SvgFilterInfo::Flood(flood.color),
rg_builder,
)
}
FilterPrimitiveKind::Blur(ref blur) => {
let width_std_deviation = blur.width * device_pixel_scale.0;
let height_std_deviation = blur.height * device_pixel_scale.0;
let input_task_id = get_task_input(
&blur.input,
filter_primitives,
rg_builder,
cur_index,
&outputs,
original_task_id,
primitive.color_space
);
RenderTask::new_blur(
DeviceSize::new(width_std_deviation, height_std_deviation),
// TODO: This is a hack to ensure that a blur task's input is always
// in the blur's previous pass.
RenderTask::new_svg_filter_primitive(
smallvec![input_task_id],
content_size,
uv_rect_kind,
SvgFilterInfo::Identity,
rg_builder,
),
rg_builder,
RenderTargetKind::Color,
None,
content_size,
)
}
FilterPrimitiveKind::Opacity(ref opacity) => {
let input_task_id = get_task_input(
&opacity.input,
filter_primitives,
rg_builder,
cur_index,
&outputs,
original_task_id,
primitive.color_space
);
RenderTask::new_svg_filter_primitive(
smallvec![input_task_id],
content_size,
uv_rect_kind,
SvgFilterInfo::Opacity(opacity.opacity),
rg_builder,
)
}
FilterPrimitiveKind::ColorMatrix(ref color_matrix) => {
let input_task_id = get_task_input(
&color_matrix.input,
filter_primitives,
rg_builder,
cur_index,
&outputs,
original_task_id,
primitive.color_space
);
RenderTask::new_svg_filter_primitive(
smallvec![input_task_id],
content_size,
uv_rect_kind,
SvgFilterInfo::ColorMatrix(Box::new(color_matrix.matrix)),
rg_builder,
)
}
FilterPrimitiveKind::DropShadow(ref drop_shadow) => {
let input_task_id = get_task_input(
&drop_shadow.input,
filter_primitives,
rg_builder,
cur_index,
&outputs,
original_task_id,
primitive.color_space
);
let blur_std_deviation = drop_shadow.shadow.blur_radius * device_pixel_scale.0;
let offset = drop_shadow.shadow.offset * LayoutToWorldScale::new(1.0) * device_pixel_scale;
let offset_task_id = RenderTask::new_svg_filter_primitive(
smallvec![input_task_id],
content_size,
uv_rect_kind,
SvgFilterInfo::Offset(offset),
rg_builder,
);
let blur_task_id = RenderTask::new_blur(
DeviceSize::new(blur_std_deviation, blur_std_deviation),
offset_task_id,
rg_builder,
RenderTargetKind::Color,
None,
content_size,
);
RenderTask::new_svg_filter_primitive(
smallvec![input_task_id, blur_task_id],
content_size,
uv_rect_kind,
SvgFilterInfo::DropShadow(drop_shadow.shadow.color),
rg_builder,
)
}
FilterPrimitiveKind::ComponentTransfer(ref component_transfer) => {
let input_task_id = get_task_input(
&component_transfer.input,
filter_primitives,
rg_builder,
cur_index,
&outputs,
original_task_id,
primitive.color_space
);
let filter_data = &filter_datas[cur_filter_data];
cur_filter_data += 1;
if filter_data.is_identity() {
input_task_id
} else {
RenderTask::new_svg_filter_primitive(
smallvec![input_task_id],
content_size,
uv_rect_kind,
SvgFilterInfo::ComponentTransfer(filter_data.clone()),
rg_builder,
)
}
}
FilterPrimitiveKind::Offset(ref info) => {
let input_task_id = get_task_input(
&info.input,
filter_primitives,
rg_builder,
cur_index,
&outputs,
original_task_id,
primitive.color_space
);
let offset = info.offset * LayoutToWorldScale::new(1.0) * device_pixel_scale;
RenderTask::new_svg_filter_primitive(
smallvec![input_task_id],
content_size,
uv_rect_kind,
SvgFilterInfo::Offset(offset),
rg_builder,
)
}
FilterPrimitiveKind::Composite(info) => {
let input_1_task_id = get_task_input(
&info.input1,
filter_primitives,
rg_builder,
cur_index,
&outputs,
original_task_id,
primitive.color_space
);
let input_2_task_id = get_task_input(
&info.input2,
filter_primitives,
rg_builder,
cur_index,
&outputs,
original_task_id,
primitive.color_space
);
RenderTask::new_svg_filter_primitive(
smallvec![input_1_task_id, input_2_task_id],
content_size,
uv_rect_kind,
SvgFilterInfo::Composite(info.operator),
rg_builder,
)
}
};
outputs.push(render_task_id);
}
// The output of a filter is the output of the last primitive in the chain.
let mut render_task_id = *outputs.last().unwrap();
// Convert to sRGB if needed
if filter_primitives.last().unwrap().color_space == ColorSpace::LinearRgb {
render_task_id = RenderTask::new_svg_filter_primitive(
smallvec![render_task_id],
content_size,
uv_rect_kind,
SvgFilterInfo::LinearToSrgb,
rg_builder,
);
}
render_task_id
}
pub fn new_svg_filter_primitive(
tasks: TaskDependencies,
target_size: DeviceIntSize,
uv_rect_kind: UvRectKind,
info: SvgFilterInfo,
rg_builder: &mut RenderTaskGraphBuilder,
) -> RenderTaskId {
let task_id = rg_builder.add().init(RenderTask::new_dynamic(
target_size,
RenderTaskKind::SvgFilter(SvgFilterTask {
extra_gpu_cache_handle: None,
info,
}),
).with_uv_rect_kind(uv_rect_kind));
for child_id in tasks {
rg_builder.add_dependency(task_id, child_id);
}
task_id
}
pub fn add_sub_pass(
&mut self,
sub_pass: SubPass,
) {
assert!(self.sub_pass.is_none(), "multiple sub-passes are not supported for now");
self.sub_pass = Some(sub_pass);
}
/// Creates render tasks from PictureCompositeMode::SVGFEGraph.
///
/// The interesting parts of the handling of SVG filters are:
/// * scene_building.rs : wrap_prim_with_filters
/// * picture.rs : get_coverage_svgfe
/// * render_task.rs : new_svg_filter_graph (you are here)
/// * render_target.rs : add_svg_filter_node_instances
pub fn new_svg_filter_graph(
filter_nodes: &[(FilterGraphNode, FilterGraphOp)],
frame_state: &mut FrameBuildingState,
data_stores: &mut DataStores,
uv_rect_kind: UvRectKind,
original_task_id: RenderTaskId,
surface_rects_task_size: DeviceIntSize,
surface_rects_clipped: DeviceRect,
surface_rects_clipped_local: PictureRect,
) -> RenderTaskId {
const BUFFER_LIMIT: usize = 256;
let mut task_by_buffer_id: [RenderTaskId; BUFFER_LIMIT] = [RenderTaskId::INVALID; BUFFER_LIMIT];
let mut subregion_by_buffer_id: [LayoutRect; BUFFER_LIMIT] = [LayoutRect::zero(); BUFFER_LIMIT];
// If nothing replaces this value (all node subregions are empty), we
// can just return the original picture
let mut output_task_id = original_task_id;
// By this point we assume the following about the graph:
// * BUFFER_LIMIT here should be >= BUFFER_LIMIT in the scene_building.rs code.
// * input buffer id < output buffer id
// * output buffer id between 0 and BUFFER_LIMIT
// * the number of filter_datas matches the number of kept nodes with op
// SVGFEComponentTransfer.
//
// These assumptions are verified with asserts in this function as
// appropriate.
// Converts a UvRectKind::Quad to a subregion, we need this for
// SourceGraphic because it could source from a larger image when doing
// a dirty rect update. In theory this can be used for blur output as
// well but it doesn't seem to be necessary from early testing.
//
// See calculate_uv_rect_kind in picture.rs for how these were generated.
fn subregion_for_uvrectkind(kind: &UvRectKind, rect: LayoutRect) -> LayoutRect {
let used =
match kind {
UvRectKind::Quad{top_left: tl, top_right: _tr, bottom_left: _bl, bottom_right: br} => {
LayoutRect::new(
LayoutPoint::new(
rect.min.x + rect.width() * tl.x / tl.w,
rect.min.y + rect.height() * tl.y / tl.w,
),
LayoutPoint::new(
rect.min.x + rect.width() * br.x / br.w,
rect.min.y + rect.height() * br.y / br.w,
),
)
}
UvRectKind::Rect => {
rect
}
};
// For some reason, the following test passes a uv_rect_kind that
// resolves to [-.2, -.2, -.2, -.2]
// reftest layout/reftests/svg/filters/dynamic-filter-invalidation-01.svg
match used.is_empty() {
true => rect,
false => used,
}
}
// Make a UvRectKind::Quad that represents a task for a node, which may
// have an inflate border, must be a Quad because the surface_rects
// compositing shader expects it to be one, we don't actually use this
// internally as we use subregions, see calculate_uv_rect_kind for how
// this works, it projects from clipped rect to unclipped rect, where
// our clipped rect is simply task_size minus the inflate, and unclipped
// is our full task_size
fn uv_rect_kind_for_task_size(task_size: DeviceIntSize, inflate: i16) -> UvRectKind {
let unclipped = DeviceRect::new(
DevicePoint::new(
inflate as f32,
inflate as f32,
),
DevicePoint::new(
task_size.width as f32 - inflate as f32,
task_size.height as f32 - inflate as f32,
),
);
let clipped = DeviceRect::new(
DevicePoint::zero(),
DevicePoint::new(
task_size.width as f32,
task_size.height as f32,
),
);
let scale_x = 1.0 / clipped.width();
let scale_y = 1.0 / clipped.height();
UvRectKind::Quad{
top_left: DeviceHomogeneousVector::new(
(unclipped.min.x - clipped.min.x) * scale_x,
(unclipped.min.y - clipped.min.y) * scale_y,
0.0, 1.0),
top_right: DeviceHomogeneousVector::new(
(unclipped.max.x - clipped.min.x) * scale_x,
(unclipped.min.y - clipped.min.y) * scale_y,
0.0, 1.0),
bottom_left: DeviceHomogeneousVector::new(
(unclipped.min.x - clipped.min.x) * scale_x,
(unclipped.max.y - clipped.min.y) * scale_y,
0.0, 1.0),
bottom_right: DeviceHomogeneousVector::new(
(unclipped.max.x - clipped.min.x) * scale_x,
(unclipped.max.y - clipped.min.y) * scale_y,
0.0, 1.0),
}
}
// Determine the local space to device pixel scaling in the most robust
// way, this accounts for local to device transform and
// device_pixel_scale (if the task is shrunk in get_surface_rects).
//
// This has some precision issues because surface_rects_clipped was
// rounded already, so it's not exactly the same transform that
// get_surface_rects performed, but it is very close, since it is not
// quite the same we have to round the offset a certain way to avoid
// introducing subpixel offsets caused by the slight deviation.
let subregion_to_device_scale_x = surface_rects_clipped.width() / surface_rects_clipped_local.width();
let subregion_to_device_scale_y = surface_rects_clipped.height() / surface_rects_clipped_local.height();
let subregion_to_device_offset_x = surface_rects_clipped.min.x - (surface_rects_clipped_local.min.x * subregion_to_device_scale_x).floor();
let subregion_to_device_offset_y = surface_rects_clipped.min.y - (surface_rects_clipped_local.min.y * subregion_to_device_scale_y).floor();
// We will treat the entire SourceGraphic coordinate space as being this
// subregion, which is how large the source picture task is.
let filter_subregion: LayoutRect = surface_rects_clipped.cast_unit();
// Calculate the used subregion (invalidation rect) for SourceGraphic
// that we are painting for, the intermediate task sizes are based on
// this portion of SourceGraphic, this also serves as a clip on the
// SourceGraphic, which is necessary for this reftest:
// layout/reftests/svg/filters/svg-filter-chains/clip-original-SourceGraphic.svg
let source_subregion =
subregion_for_uvrectkind(
&uv_rect_kind,
surface_rects_clipped.cast_unit(),
)
.intersection(&filter_subregion)
.unwrap_or(LayoutRect::zero())
.round_out();
// This is the rect for the output picture we are producing
let output_rect = filter_subregion.to_i32();
// Output to the same subregion we were provided
let output_subregion = filter_subregion;
// Iterate the filter nodes and create tasks
let mut made_dependency_on_source = false;
for (filter_index, (filter_node, op)) in filter_nodes.iter().enumerate() {
let node = &filter_node;
let is_output = filter_index == filter_nodes.len() - 1;
// Note that this is never set on the final output by design.
if !node.kept_by_optimizer {
continue;
}
// Certain ops have parameters that need to be scaled to device
// space.
let op = match op {
FilterGraphOp::SVGFEBlendColor => op.clone(),
FilterGraphOp::SVGFEBlendColorBurn => op.clone(),
FilterGraphOp::SVGFEBlendColorDodge => op.clone(),
FilterGraphOp::SVGFEBlendDarken => op.clone(),
FilterGraphOp::SVGFEBlendDifference => op.clone(),
FilterGraphOp::SVGFEBlendExclusion => op.clone(),
FilterGraphOp::SVGFEBlendHardLight => op.clone(),
FilterGraphOp::SVGFEBlendHue => op.clone(),
FilterGraphOp::SVGFEBlendLighten => op.clone(),
FilterGraphOp::SVGFEBlendLuminosity => op.clone(),
FilterGraphOp::SVGFEBlendMultiply => op.clone(),
FilterGraphOp::SVGFEBlendNormal => op.clone(),
FilterGraphOp::SVGFEBlendOverlay => op.clone(),
FilterGraphOp::SVGFEBlendSaturation => op.clone(),
FilterGraphOp::SVGFEBlendScreen => op.clone(),
FilterGraphOp::SVGFEBlendSoftLight => op.clone(),
FilterGraphOp::SVGFEColorMatrix{..} => op.clone(),
FilterGraphOp::SVGFEComponentTransfer => unreachable!(),
FilterGraphOp::SVGFEComponentTransferInterned{..} => op.clone(),
FilterGraphOp::SVGFECompositeArithmetic{..} => op.clone(),
FilterGraphOp::SVGFECompositeATop => op.clone(),
FilterGraphOp::SVGFECompositeIn => op.clone(),
FilterGraphOp::SVGFECompositeLighter => op.clone(),
FilterGraphOp::SVGFECompositeOut => op.clone(),
FilterGraphOp::SVGFECompositeOver => op.clone(),
FilterGraphOp::SVGFECompositeXOR => op.clone(),
FilterGraphOp::SVGFEConvolveMatrixEdgeModeDuplicate{
kernel_unit_length_x, kernel_unit_length_y, order_x,
order_y, kernel, divisor, bias, target_x, target_y,
preserve_alpha} => {
FilterGraphOp::SVGFEConvolveMatrixEdgeModeDuplicate{
kernel_unit_length_x:
(kernel_unit_length_x * subregion_to_device_scale_x).round(),
kernel_unit_length_y:
(kernel_unit_length_y * subregion_to_device_scale_y).round(),
order_x: *order_x, order_y: *order_y, kernel: *kernel,
divisor: *divisor, bias: *bias, target_x: *target_x,
target_y: *target_y, preserve_alpha: *preserve_alpha}
},
FilterGraphOp::SVGFEConvolveMatrixEdgeModeNone{
kernel_unit_length_x, kernel_unit_length_y, order_x,
order_y, kernel, divisor, bias, target_x, target_y,
preserve_alpha} => {
FilterGraphOp::SVGFEConvolveMatrixEdgeModeNone{
kernel_unit_length_x:
(kernel_unit_length_x * subregion_to_device_scale_x).round(),
kernel_unit_length_y:
(kernel_unit_length_y * subregion_to_device_scale_y).round(),
order_x: *order_x, order_y: *order_y, kernel: *kernel,
divisor: *divisor, bias: *bias, target_x: *target_x,
target_y: *target_y, preserve_alpha: *preserve_alpha}
},
FilterGraphOp::SVGFEConvolveMatrixEdgeModeWrap{
kernel_unit_length_x, kernel_unit_length_y, order_x,
order_y, kernel, divisor, bias, target_x, target_y,
preserve_alpha} => {
FilterGraphOp::SVGFEConvolveMatrixEdgeModeWrap{
kernel_unit_length_x:
(kernel_unit_length_x * subregion_to_device_scale_x).round(),
kernel_unit_length_y:
(kernel_unit_length_y * subregion_to_device_scale_y).round(),
order_x: *order_x, order_y: *order_y, kernel: *kernel,
divisor: *divisor, bias: *bias, target_x: *target_x,
target_y: *target_y, preserve_alpha: *preserve_alpha}
},
FilterGraphOp::SVGFEDiffuseLightingDistant{
surface_scale, diffuse_constant, kernel_unit_length_x,
kernel_unit_length_y, azimuth, elevation} => {
FilterGraphOp::SVGFEDiffuseLightingDistant{
surface_scale: *surface_scale,
diffuse_constant: *diffuse_constant,
kernel_unit_length_x:
(kernel_unit_length_x * subregion_to_device_scale_x).round(),
kernel_unit_length_y:
(kernel_unit_length_y * subregion_to_device_scale_y).round(),
azimuth: *azimuth, elevation: *elevation}
},
FilterGraphOp::SVGFEDiffuseLightingPoint{
surface_scale, diffuse_constant, kernel_unit_length_x,
kernel_unit_length_y, x, y, z} => {
FilterGraphOp::SVGFEDiffuseLightingPoint{
surface_scale: *surface_scale,
diffuse_constant: *diffuse_constant,
kernel_unit_length_x:
(kernel_unit_length_x * subregion_to_device_scale_x).round(),
kernel_unit_length_y:
(kernel_unit_length_y * subregion_to_device_scale_y).round(),
x: x * subregion_to_device_scale_x + subregion_to_device_offset_x,
y: y * subregion_to_device_scale_y + subregion_to_device_offset_y,
z: *z}
},
FilterGraphOp::SVGFEDiffuseLightingSpot{
surface_scale, diffuse_constant, kernel_unit_length_x,
kernel_unit_length_y, x, y, z, points_at_x, points_at_y,
points_at_z, cone_exponent, limiting_cone_angle} => {
FilterGraphOp::SVGFEDiffuseLightingSpot{
surface_scale: *surface_scale,
diffuse_constant: *diffuse_constant,
kernel_unit_length_x:
(kernel_unit_length_x * subregion_to_device_scale_x).round(),
kernel_unit_length_y:
(kernel_unit_length_y * subregion_to_device_scale_y).round(),
x: x * subregion_to_device_scale_x + subregion_to_device_offset_x,
y: y * subregion_to_device_scale_y + subregion_to_device_offset_y,
z: *z,
points_at_x: points_at_x * subregion_to_device_scale_x + subregion_to_device_offset_x,
points_at_y: points_at_y * subregion_to_device_scale_y + subregion_to_device_offset_y,
points_at_z: *points_at_z,
cone_exponent: *cone_exponent,
limiting_cone_angle: *limiting_cone_angle}
},
FilterGraphOp::SVGFEFlood{..} => op.clone(),
FilterGraphOp::SVGFEDisplacementMap{
scale, x_channel_selector, y_channel_selector} => {
FilterGraphOp::SVGFEDisplacementMap{
scale: scale * subregion_to_device_scale_x,
x_channel_selector: *x_channel_selector,
y_channel_selector: *y_channel_selector}
},
FilterGraphOp::SVGFEDropShadow{
color, dx, dy, std_deviation_x, std_deviation_y} => {
FilterGraphOp::SVGFEDropShadow{
color: *color,
dx: dx * subregion_to_device_scale_x,
dy: dy * subregion_to_device_scale_y,
std_deviation_x: std_deviation_x * subregion_to_device_scale_x,
std_deviation_y: std_deviation_y * subregion_to_device_scale_y}
},
FilterGraphOp::SVGFEGaussianBlur{std_deviation_x, std_deviation_y} => {
let std_deviation_x = std_deviation_x * subregion_to_device_scale_x;
let std_deviation_y = std_deviation_y * subregion_to_device_scale_y;
// For blurs that effectively have no radius in display
// space, we can convert to identity.
if std_deviation_x + std_deviation_y >= 0.125 {
FilterGraphOp::SVGFEGaussianBlur{
std_deviation_x,
std_deviation_y}
} else {
FilterGraphOp::SVGFEIdentity
}
},
FilterGraphOp::SVGFEIdentity => op.clone(),
FilterGraphOp::SVGFEImage{..} => op.clone(),
FilterGraphOp::SVGFEMorphologyDilate{radius_x, radius_y} => {
FilterGraphOp::SVGFEMorphologyDilate{
radius_x: (radius_x * subregion_to_device_scale_x).round(),
radius_y: (radius_y * subregion_to_device_scale_y).round()}
},
FilterGraphOp::SVGFEMorphologyErode{radius_x, radius_y} => {
FilterGraphOp::SVGFEMorphologyErode{
radius_x: (radius_x * subregion_to_device_scale_x).round(),
radius_y: (radius_y * subregion_to_device_scale_y).round()}
},
FilterGraphOp::SVGFEOpacity{..} => op.clone(),
FilterGraphOp::SVGFESourceAlpha => op.clone(),
FilterGraphOp::SVGFESourceGraphic => op.clone(),
FilterGraphOp::SVGFESpecularLightingDistant{
surface_scale, specular_constant, specular_exponent,
kernel_unit_length_x, kernel_unit_length_y, azimuth,
elevation} => {
FilterGraphOp::SVGFESpecularLightingDistant{
surface_scale: *surface_scale,
specular_constant: *specular_constant,
specular_exponent: *specular_exponent,
kernel_unit_length_x:
(kernel_unit_length_x * subregion_to_device_scale_x).round(),
kernel_unit_length_y:
(kernel_unit_length_y * subregion_to_device_scale_y).round(),
azimuth: *azimuth, elevation: *elevation}
},
FilterGraphOp::SVGFESpecularLightingPoint{
surface_scale, specular_constant, specular_exponent,
kernel_unit_length_x, kernel_unit_length_y, x, y, z } => {
FilterGraphOp::SVGFESpecularLightingPoint{
surface_scale: *surface_scale,
specular_constant: *specular_constant,
specular_exponent: *specular_exponent,
kernel_unit_length_x:
(kernel_unit_length_x * subregion_to_device_scale_x).round(),
kernel_unit_length_y:
(kernel_unit_length_y * subregion_to_device_scale_y).round(),
x: x * subregion_to_device_scale_x + subregion_to_device_offset_x,
y: y * subregion_to_device_scale_y + subregion_to_device_offset_y,
z: *z }
},
FilterGraphOp::SVGFESpecularLightingSpot{
surface_scale, specular_constant, specular_exponent,
kernel_unit_length_x, kernel_unit_length_y, x, y, z,
points_at_x, points_at_y, points_at_z, cone_exponent,
limiting_cone_angle} => {
FilterGraphOp::SVGFESpecularLightingSpot{
surface_scale: *surface_scale,
specular_constant: *specular_constant,
specular_exponent: *specular_exponent,
kernel_unit_length_x:
(kernel_unit_length_x * subregion_to_device_scale_x).round(),
kernel_unit_length_y:
(kernel_unit_length_y * subregion_to_device_scale_y).round(),
x: x * subregion_to_device_scale_x + subregion_to_device_offset_x,
y: y * subregion_to_device_scale_y + subregion_to_device_offset_y,
z: *z,
points_at_x: points_at_x * subregion_to_device_scale_x + subregion_to_device_offset_x,
points_at_y: points_at_y * subregion_to_device_scale_y + subregion_to_device_offset_y,
points_at_z: *points_at_z,
cone_exponent: *cone_exponent,
limiting_cone_angle: *limiting_cone_angle}
},
FilterGraphOp::SVGFETile => op.clone(),
FilterGraphOp::SVGFEToAlpha => op.clone(),
FilterGraphOp::SVGFETurbulenceWithFractalNoiseWithNoStitching{
base_frequency_x, base_frequency_y, num_octaves, seed} => {
FilterGraphOp::SVGFETurbulenceWithFractalNoiseWithNoStitching{
base_frequency_x:
base_frequency_x * subregion_to_device_scale_x,
base_frequency_y:
base_frequency_y * subregion_to_device_scale_y,
num_octaves: *num_octaves, seed: *seed}
},
FilterGraphOp::SVGFETurbulenceWithFractalNoiseWithStitching{
base_frequency_x, base_frequency_y, num_octaves, seed} => {
FilterGraphOp::SVGFETurbulenceWithFractalNoiseWithNoStitching{
base_frequency_x:
base_frequency_x * subregion_to_device_scale_x,
base_frequency_y:
base_frequency_y * subregion_to_device_scale_y,
num_octaves: *num_octaves, seed: *seed}
},
FilterGraphOp::SVGFETurbulenceWithTurbulenceNoiseWithNoStitching{
base_frequency_x, base_frequency_y, num_octaves, seed} => {
FilterGraphOp::SVGFETurbulenceWithFractalNoiseWithNoStitching{
base_frequency_x:
base_frequency_x * subregion_to_device_scale_x,
base_frequency_y:
base_frequency_y * subregion_to_device_scale_y,
num_octaves: *num_octaves, seed: *seed}
},
FilterGraphOp::SVGFETurbulenceWithTurbulenceNoiseWithStitching{
base_frequency_x, base_frequency_y, num_octaves, seed} => {
FilterGraphOp::SVGFETurbulenceWithFractalNoiseWithNoStitching{
base_frequency_x:
base_frequency_x * subregion_to_device_scale_x,
base_frequency_y:
base_frequency_y * subregion_to_device_scale_y,
num_octaves: *num_octaves, seed: *seed}
},
};
// Process the inputs and figure out their new subregion, because
// the SourceGraphic subregion is smaller than it was in scene build
// now that it reflects the invalidation rect
//
// Also look up the child tasks while we are here.
let mut used_subregion = LayoutRect::zero();
let node_inputs: Vec<(FilterGraphPictureReference, RenderTaskId)> = node.inputs.iter().map(|input| {
let (subregion, task) =
match input.buffer_id {
FilterOpGraphPictureBufferId::BufferId(id) => {
(subregion_by_buffer_id[id as usize], task_by_buffer_id[id as usize])
}
FilterOpGraphPictureBufferId::None => {
// Task must resolve so we use the SourceGraphic as
// a placeholder for these, they don't actually
// contribute anything to the output
(LayoutRect::zero(), original_task_id)
}
};
// Convert offset to device coordinates.
let offset = LayoutVector2D::new(
(input.offset.x * subregion_to_device_scale_x).round(),
(input.offset.y * subregion_to_device_scale_y).round(),
);
// To figure out the portion of the node subregion used by this
// source image we need to apply the target padding. Note that
// this does not affect the subregion of the input, as that
// can't be modified as it is used for placement (offset).
let target_padding = input.target_padding
.scale(subregion_to_device_scale_x, subregion_to_device_scale_y)
.round();
let target_subregion =
LayoutRect::new(
LayoutPoint::new(
subregion.min.x + target_padding.min.x,
subregion.min.y + target_padding.min.y,
),
LayoutPoint::new(
subregion.max.x + target_padding.max.x,
subregion.max.y + target_padding.max.y,
),
);
used_subregion = used_subregion.union(&target_subregion);
(FilterGraphPictureReference{
buffer_id: input.buffer_id,
// Apply offset to the placement of the input subregion.
subregion: subregion.translate(offset),
offset: LayoutVector2D::zero(),
inflate: input.inflate,
// Nothing past this point uses the padding.
source_padding: LayoutRect::zero(),
target_padding: LayoutRect::zero(),
}, task)
}).collect();
// Convert subregion from PicturePixels to DevicePixels and round.
let full_subregion = node.subregion
.scale(subregion_to_device_scale_x, subregion_to_device_scale_y)
.translate(LayoutVector2D::new(subregion_to_device_offset_x, subregion_to_device_offset_y))
.round();
// Clip the used subregion we calculated from the inputs to fit
// within the node's specified subregion.
used_subregion = used_subregion
.intersection(&full_subregion)
.unwrap_or(LayoutRect::zero())
.round();
// Certain filters need to override the used_subregion directly.
match op {
FilterGraphOp::SVGFEBlendColor => {},
FilterGraphOp::SVGFEBlendColorBurn => {},
FilterGraphOp::SVGFEBlendColorDodge => {},
FilterGraphOp::SVGFEBlendDarken => {},
FilterGraphOp::SVGFEBlendDifference => {},
FilterGraphOp::SVGFEBlendExclusion => {},
FilterGraphOp::SVGFEBlendHardLight => {},
FilterGraphOp::SVGFEBlendHue => {},
FilterGraphOp::SVGFEBlendLighten => {},
FilterGraphOp::SVGFEBlendLuminosity => {},
FilterGraphOp::SVGFEBlendMultiply => {},
FilterGraphOp::SVGFEBlendNormal => {},
FilterGraphOp::SVGFEBlendOverlay => {},
FilterGraphOp::SVGFEBlendSaturation => {},
FilterGraphOp::SVGFEBlendScreen => {},
FilterGraphOp::SVGFEBlendSoftLight => {},
FilterGraphOp::SVGFEColorMatrix{values} => {
if values[3] != 0.0 ||
values[7] != 0.0 ||
values[11] != 0.0 ||
values[15] != 1.0 ||
values[19] != 0.0 {
// Manipulating alpha can easily create new
// pixels outside of input subregions
used_subregion = full_subregion;
}
},
FilterGraphOp::SVGFEComponentTransfer => unreachable!(),
FilterGraphOp::SVGFEComponentTransferInterned{handle: _, creates_pixels} => {
// Check if the value of alpha[0] is modified, if so
// the whole subregion is used because it will be
// creating new pixels outside of input subregions
if creates_pixels {
used_subregion = full_subregion;
}
},
FilterGraphOp::SVGFECompositeArithmetic { k1, k2, k3, k4 } => {
// Optimize certain cases of Arithmetic operator
//
// See logic for SVG_FECOMPOSITE_OPERATOR_ARITHMETIC
// in FilterSupport.cpp for more information.
//
// Any other case uses the union of input subregions
if k4 != 0.0 {
// Can produce pixels anywhere in the subregion.
used_subregion = full_subregion;
} else if k1 != 0.0 && k2 == 0.0 && k3 == 0.0 && k4 == 0.0 {
// Can produce pixels where both exist.
used_subregion = full_subregion
.intersection(&node_inputs[0].0.subregion)
.unwrap_or(LayoutRect::zero())
.intersection(&node_inputs[1].0.subregion)
.unwrap_or(LayoutRect::zero());
}
else if k2 != 0.0 && k3 == 0.0 && k4 == 0.0 {
// Can produce pixels where source exists.
used_subregion = full_subregion
.intersection(&node_inputs[0].0.subregion)
.unwrap_or(LayoutRect::zero());
}
else if k2 == 0.0 && k3 != 0.0 && k4 == 0.0 {
// Can produce pixels where background exists.
used_subregion = full_subregion
.intersection(&node_inputs[1].0.subregion)
.unwrap_or(LayoutRect::zero());
}
},
FilterGraphOp::SVGFECompositeATop => {
// Can only produce pixels where background exists.
used_subregion = full_subregion
.intersection(&node_inputs[1].0.subregion)
.unwrap_or(LayoutRect::zero());
},
FilterGraphOp::SVGFECompositeIn => {
// Can only produce pixels where both exist.
used_subregion = used_subregion
.intersection(&node_inputs[0].0.subregion)
.unwrap_or(LayoutRect::zero())
.intersection(&node_inputs[1].0.subregion)
.unwrap_or(LayoutRect::zero());
},
FilterGraphOp::SVGFECompositeLighter => {},
FilterGraphOp::SVGFECompositeOut => {
// Can only produce pixels where source exists.
used_subregion = full_subregion
.intersection(&node_inputs[0].0.subregion)
.unwrap_or(LayoutRect::zero());
},
FilterGraphOp::SVGFECompositeOver => {},
FilterGraphOp::SVGFECompositeXOR => {},
FilterGraphOp::SVGFEConvolveMatrixEdgeModeDuplicate{..} => {},
FilterGraphOp::SVGFEConvolveMatrixEdgeModeNone{..} => {},
FilterGraphOp::SVGFEConvolveMatrixEdgeModeWrap{..} => {},
FilterGraphOp::SVGFEDiffuseLightingDistant{..} => {},
FilterGraphOp::SVGFEDiffuseLightingPoint{..} => {},
FilterGraphOp::SVGFEDiffuseLightingSpot{..} => {},
FilterGraphOp::SVGFEDisplacementMap{..} => {},
FilterGraphOp::SVGFEDropShadow{..} => {},
FilterGraphOp::SVGFEFlood { color } => {
// Subregion needs to be set to the full node
// subregion for fills (unless the fill is a no-op),
// we know at this point that it has no inputs, so the
// used_region is empty unless we set it here.
if color.a > 0.0 {
used_subregion = full_subregion;
}
},
FilterGraphOp::SVGFEIdentity => {},
FilterGraphOp::SVGFEImage { sampling_filter: _sampling_filter, matrix: _matrix } => {
// TODO: calculate the actual subregion
used_subregion = full_subregion;
},
FilterGraphOp::SVGFEGaussianBlur{..} => {},
FilterGraphOp::SVGFEMorphologyDilate{..} => {},
FilterGraphOp::SVGFEMorphologyErode{..} => {},
FilterGraphOp::SVGFEOpacity{valuebinding: _valuebinding, value} => {
// If fully transparent, we can ignore this node
if value <= 0.0 {
used_subregion = LayoutRect::zero();
}
},
FilterGraphOp::SVGFESourceAlpha |
FilterGraphOp::SVGFESourceGraphic => {
used_subregion = source_subregion;
},
FilterGraphOp::SVGFESpecularLightingDistant{..} => {},
FilterGraphOp::SVGFESpecularLightingPoint{..} => {},
FilterGraphOp::SVGFESpecularLightingSpot{..} => {},
FilterGraphOp::SVGFETile => {
if !used_subregion.is_empty() {
// This fills the entire target, at least if there are
// any input pixels to work with.
used_subregion = full_subregion;
}
},
FilterGraphOp::SVGFEToAlpha => {},
FilterGraphOp::SVGFETurbulenceWithFractalNoiseWithNoStitching{..} |
FilterGraphOp::SVGFETurbulenceWithFractalNoiseWithStitching{..} |
FilterGraphOp::SVGFETurbulenceWithTurbulenceNoiseWithNoStitching{..} |
FilterGraphOp::SVGFETurbulenceWithTurbulenceNoiseWithStitching{..} => {
// Turbulence produces pixel values throughout the
// node subregion.
used_subregion = full_subregion;
},
}
// If this is the output node, apply the output clip.
let node_inflate = node.inflate;
let mut create_output_task = false;
if is_output {
// If we're drawing a subregion that encloses output_subregion
// we can just crop the node to output_subregion.
if used_subregion.to_i32().contains_box(&output_rect) {
used_subregion = output_subregion;
} else {
// We'll have to create an extra blit task after this task
// so that there is transparent black padding around it.
create_output_task = true;
}
}
// Convert subregion from layout pixels to integer device pixels and
// then calculate size afterwards so it reflects the used pixel area
//
// This can be an empty rect if the source_subregion invalidation
// rect didn't request any pixels of this node, but we can't skip
// creating tasks that have no size because they would leak in the
// render task graph with no consumers
let node_task_rect: DeviceIntRect = used_subregion.to_i32().cast_unit();
let mut node_task_size = node_task_rect.size().cast_unit();
// We have to limit the render target sizes we're asking for on the
// intermediate nodes; it's not feasible to allocate extremely large
// surfaces. Note that the SVGFEFilterTask code can adapt to any
// scaling that we use here, input subregions simply have to be in
// the same space as the target subregion, which we're not changing,
// and operator parameters like kernel_unit_length are also in that
// space. Blurs will do this same logic if their intermediate is
// too large. We use a simple halving calculation here so that
// pixel alignment is still vaguely sensible.
while node_task_size.width as usize + node_inflate as usize * 2 > MAX_SURFACE_SIZE ||
node_task_size.height as usize + node_inflate as usize * 2 > MAX_SURFACE_SIZE {
node_task_size.width >>= 1;
node_task_size.height >>= 1;
}
// SVG spec requires that a later node sampling pixels outside
// this node's subregion will receive a transparent black color
// for those samples, we achieve this by adding a 1 pixel border
// around the target rect, which works fine with the clamping of the
// texture fetch in the shader, and to account for the offset we
// have to make a UvRectKind::Quad mapping for later nodes to use
// when sampling this output, if they use feOffset or have a
// larger target rect those samples will be clamped to the
// transparent black border and thus meet spec.
node_task_size.width += node_inflate as i32 * 2;
node_task_size.height += node_inflate as i32 * 2;
// Make the uv_rect_kind for this node's task to use, this matters
// only on the final node because we don't use it internally
let node_uv_rect_kind =
uv_rect_kind_for_task_size(node_task_size, node_inflate);
// Create task for this node
let mut task_id;
match op {
FilterGraphOp::SVGFEGaussianBlur { std_deviation_x, std_deviation_y } => {
// Note: wrap_prim_with_filters copies the SourceGraphic to
// a node to apply the transparent border around the image,
// we rely on that behavior here as the Blur filter is a
// different shader without awareness of the subregion
// rules in the SVG spec.
// Find the input task id
assert!(node_inputs.len() == 1);
let blur_input = &node_inputs[0].0;
let source_task_id = node_inputs[0].1;
// We have to make a copy of the input that is padded with
// transparent black for the area outside the subregion, so
// that the blur task does not duplicate at the edges, and
// this is also where we have to adjust size to account for
// for downscaling of the image in the blur task to avoid
// introducing sampling artifacts on the downscale
let mut adjusted_blur_std_deviation = DeviceSize::new(
std_deviation_x,
std_deviation_y,
);
let blur_subregion = blur_input.subregion
.inflate(
std_deviation_x.ceil() * BLUR_SAMPLE_SCALE,
std_deviation_y.ceil() * BLUR_SAMPLE_SCALE);
let blur_task_size = blur_subregion.size().cast_unit();
// Adjust task size to prevent potential sampling errors
let mut adjusted_blur_task_size =
BlurTask::adjusted_blur_source_size(
blur_task_size,
adjusted_blur_std_deviation,
);
// Now change the subregion to match the revised task size,
// keeping it centered should keep animated radius smooth.
let corner = LayoutPoint::new(
blur_subregion.min.x + ((
blur_task_size.width as i32 -
adjusted_blur_task_size.width) / 2) as f32,
blur_subregion.min.y + ((
blur_task_size.height as i32 -
adjusted_blur_task_size.height) / 2) as f32,
)
.floor();
// Recalculate the blur_subregion to match, note that if the
// task was downsized it doesn't affect the size of this
// rect, so we don't have to scale blur_input.subregion for
// input purposes as they are the same scale.
let blur_subregion = LayoutRect::new(
corner,
LayoutPoint::new(
corner.x + adjusted_blur_task_size.width as f32,
corner.y + adjusted_blur_task_size.height as f32,
),
);
// For extremely large blur radius we have to limit size,
// see comments on node_task_size above for more details.
while adjusted_blur_task_size.to_i32().width as usize > MAX_SURFACE_SIZE ||
adjusted_blur_task_size.to_i32().height as usize > MAX_SURFACE_SIZE {
adjusted_blur_task_size.width >>= 1;
adjusted_blur_task_size.height >>= 1;
adjusted_blur_std_deviation.width *= 0.5;
adjusted_blur_std_deviation.height *= 0.5;
if adjusted_blur_task_size.width < 2 {
adjusted_blur_task_size.width = 2;
}
if adjusted_blur_task_size.height < 2 {
adjusted_blur_task_size.height = 2;
}
}
let input_subregion_task_id = frame_state.rg_builder.add().init(RenderTask::new_dynamic(
adjusted_blur_task_size,
RenderTaskKind::SVGFENode(
SVGFEFilterTask{
node: FilterGraphNode{
kept_by_optimizer: true,
linear: false,
inflate: 0,
inputs: [blur_input.clone()].to_vec(),
subregion: blur_subregion,
},
op: FilterGraphOp::SVGFEIdentity,
content_origin: DevicePoint::zero(),
extra_gpu_cache_handle: None,
}
),
).with_uv_rect_kind(UvRectKind::Rect));
// Adding the dependencies sets the inputs for this task
frame_state.rg_builder.add_dependency(input_subregion_task_id, source_task_id);
// TODO: We should do this blur in the correct
// colorspace, linear=true is the default in SVG and
// new_blur does not currently support it. If the nodes
// that consume the result only use the alpha channel, it
// does not matter, but when they use the RGB it matters.
let blur_task_id =
RenderTask::new_blur(
adjusted_blur_std_deviation,
input_subregion_task_id,
frame_state.rg_builder,
RenderTargetKind::Color,
None,
adjusted_blur_task_size,
);
task_id = frame_state.rg_builder.add().init(RenderTask::new_dynamic(
node_task_size,
RenderTaskKind::SVGFENode(
SVGFEFilterTask{
node: FilterGraphNode{
kept_by_optimizer: true,
linear: node.linear,
inflate: node_inflate,
inputs: [
FilterGraphPictureReference{
buffer_id: blur_input.buffer_id,
subregion: blur_subregion,
inflate: 0,
offset: LayoutVector2D::zero(),
source_padding: LayoutRect::zero(),
target_padding: LayoutRect::zero(),
}].to_vec(),
subregion: used_subregion,
},
op: FilterGraphOp::SVGFEIdentity,
content_origin: DevicePoint::zero(),
extra_gpu_cache_handle: None,
}
),
).with_uv_rect_kind(node_uv_rect_kind));
// Adding the dependencies sets the inputs for this task
frame_state.rg_builder.add_dependency(task_id, blur_task_id);
}
FilterGraphOp::SVGFEDropShadow { color, dx, dy, std_deviation_x, std_deviation_y } => {
// Note: wrap_prim_with_filters copies the SourceGraphic to
// a node to apply the transparent border around the image,
// we rely on that behavior here as the Blur filter is a
// different shader without awareness of the subregion
// rules in the SVG spec.
// Find the input task id
assert!(node_inputs.len() == 1);
let blur_input = &node_inputs[0].0;
let source_task_id = node_inputs[0].1;
// We have to make a copy of the input that is padded with
// transparent black for the area outside the subregion, so
// that the blur task does not duplicate at the edges, and
// this is also where we have to adjust size to account for
// for downscaling of the image in the blur task to avoid
// introducing sampling artifacts on the downscale
let mut adjusted_blur_std_deviation = DeviceSize::new(
std_deviation_x,
std_deviation_y,
);
let blur_subregion = blur_input.subregion
.inflate(
std_deviation_x.ceil() * BLUR_SAMPLE_SCALE,
std_deviation_y.ceil() * BLUR_SAMPLE_SCALE);
let blur_task_size = blur_subregion.size().cast_unit();
// Adjust task size to prevent potential sampling errors
let mut adjusted_blur_task_size =
BlurTask::adjusted_blur_source_size(
blur_task_size,
adjusted_blur_std_deviation,
);
// Now change the subregion to match the revised task size,
// keeping it centered should keep animated radius smooth.
let corner = LayoutPoint::new(
blur_subregion.min.x + ((
blur_task_size.width as i32 -
adjusted_blur_task_size.width) / 2) as f32,
blur_subregion.min.y + ((
blur_task_size.height as i32 -
adjusted_blur_task_size.height) / 2) as f32,
)
.floor();
// Recalculate the blur_subregion to match, note that if the
// task was downsized it doesn't affect the size of this
// rect, so we don't have to scale blur_input.subregion for
// input purposes as they are the same scale.
let blur_subregion = LayoutRect::new(
corner,
LayoutPoint::new(
corner.x + adjusted_blur_task_size.width as f32,
corner.y + adjusted_blur_task_size.height as f32,
),
);
// For extremely large blur radius we have to limit size,
// see comments on node_task_size above for more details.
while adjusted_blur_task_size.to_i32().width as usize > MAX_SURFACE_SIZE ||
adjusted_blur_task_size.to_i32().height as usize > MAX_SURFACE_SIZE {
adjusted_blur_task_size.width >>= 1;
adjusted_blur_task_size.height >>= 1;
adjusted_blur_std_deviation.width *= 0.5;
adjusted_blur_std_deviation.height *= 0.5;
if adjusted_blur_task_size.width < 2 {
adjusted_blur_task_size.width = 2;
}
if adjusted_blur_task_size.height < 2 {
adjusted_blur_task_size.height = 2;
}
}
let input_subregion_task_id = frame_state.rg_builder.add().init(RenderTask::new_dynamic(
adjusted_blur_task_size,
RenderTaskKind::SVGFENode(
SVGFEFilterTask{
node: FilterGraphNode{
kept_by_optimizer: true,
linear: false,
inputs: [
FilterGraphPictureReference{
buffer_id: blur_input.buffer_id,
subregion: blur_input.subregion,
offset: LayoutVector2D::zero(),
inflate: blur_input.inflate,
source_padding: LayoutRect::zero(),
target_padding: LayoutRect::zero(),
}].to_vec(),
subregion: blur_subregion,
inflate: 0,
},
op: FilterGraphOp::SVGFEIdentity,
content_origin: DevicePoint::zero(),
extra_gpu_cache_handle: None,
}
),
).with_uv_rect_kind(UvRectKind::Rect));
// Adding the dependencies sets the inputs for this task
frame_state.rg_builder.add_dependency(input_subregion_task_id, source_task_id);
// The shadow compositing only cares about alpha channel
// which is always linear, so we can blur this in sRGB or
// linear color space and the result is the same as we will
// be replacing the rgb completely.
let blur_task_id =
RenderTask::new_blur(
adjusted_blur_std_deviation,
input_subregion_task_id,
frame_state.rg_builder,
RenderTargetKind::Color,
None,
adjusted_blur_task_size,
);
// Now we make the compositing task, for this we need to put
// the blurred shadow image at the correct subregion offset
let blur_subregion = blur_subregion
.translate(LayoutVector2D::new(dx, dy));
task_id = frame_state.rg_builder.add().init(RenderTask::new_dynamic(
node_task_size,
RenderTaskKind::SVGFENode(
SVGFEFilterTask{
node: FilterGraphNode{
kept_by_optimizer: true,
linear: node.linear,
inflate: node_inflate,
inputs: [
// Original picture
*blur_input,
// Shadow picture
FilterGraphPictureReference{
buffer_id: blur_input.buffer_id,
subregion: blur_subregion,
inflate: 0,
offset: LayoutVector2D::zero(),
source_padding: LayoutRect::zero(),
target_padding: LayoutRect::zero(),
}].to_vec(),
subregion: used_subregion,
},
op: FilterGraphOp::SVGFEDropShadow{
color,
// These parameters don't matter here
dx: 0.0, dy: 0.0,
std_deviation_x: 0.0, std_deviation_y: 0.0,
},
content_origin: DevicePoint::zero(),
extra_gpu_cache_handle: None,
}
),
).with_uv_rect_kind(node_uv_rect_kind));
// Adding the dependencies sets the inputs for this task
frame_state.rg_builder.add_dependency(task_id, source_task_id);
frame_state.rg_builder.add_dependency(task_id, blur_task_id);
}
FilterGraphOp::SVGFESourceAlpha |
FilterGraphOp::SVGFESourceGraphic => {
// These copy from the original task, we have to synthesize
// a fake input binding to make the shader do the copy. In
// the case of SourceAlpha the shader will zero the RGB but
// we don't have to care about that distinction here.
task_id = frame_state.rg_builder.add().init(RenderTask::new_dynamic(
node_task_size,
RenderTaskKind::SVGFENode(
SVGFEFilterTask{
node: FilterGraphNode{
kept_by_optimizer: true,
linear: node.linear,
inflate: node_inflate,
inputs: [
FilterGraphPictureReference{
buffer_id: FilterOpGraphPictureBufferId::None,
// This is what makes the mapping
// actually work - this has to be
// the subregion of the whole filter
// because that is the size of the
// input task, it will be cropped to
// the used area (source_subregion).
subregion: filter_subregion,
offset: LayoutVector2D::zero(),
inflate: 0,
source_padding: LayoutRect::zero(),
target_padding: LayoutRect::zero(),
}
].to_vec(),
subregion: used_subregion,
},
op: op.clone(),
content_origin: DevicePoint::zero(),
extra_gpu_cache_handle: None,
}
),
).with_uv_rect_kind(node_uv_rect_kind));
frame_state.rg_builder.add_dependency(task_id, original_task_id);
made_dependency_on_source = true;
}
FilterGraphOp::SVGFEComponentTransferInterned { handle, creates_pixels: _ } => {
// FIXME: Doing this in prepare_interned_prim_for_render
// doesn't seem to be enough, where should it be done?
let filter_data = &mut data_stores.filter_data[handle];
filter_data.update(frame_state);
// ComponentTransfer has a gpu_cache_handle that we need to
// pass along
task_id = frame_state.rg_builder.add().init(RenderTask::new_dynamic(
node_task_size,
RenderTaskKind::SVGFENode(
SVGFEFilterTask{
node: FilterGraphNode{
kept_by_optimizer: true,
linear: node.linear,
inputs: node_inputs.iter().map(|input| {input.0}).collect(),
subregion: used_subregion,
inflate: node_inflate,
},
op: op.clone(),
content_origin: DevicePoint::zero(),
extra_gpu_cache_handle: Some(filter_data.gpu_cache_handle),
}
),
).with_uv_rect_kind(node_uv_rect_kind));
// Add the dependencies for inputs of this node, which will
// be used by add_svg_filter_node_instances later
for (_input, input_task) in &node_inputs {
if *input_task == original_task_id {
made_dependency_on_source = true;
}
if *input_task != RenderTaskId::INVALID {
frame_state.rg_builder.add_dependency(task_id, *input_task);
}
}
}
_ => {
// This is the usual case - zero, one or two inputs that
// reference earlier node results.
task_id = frame_state.rg_builder.add().init(RenderTask::new_dynamic(
node_task_size,
RenderTaskKind::SVGFENode(
SVGFEFilterTask{
node: FilterGraphNode{
kept_by_optimizer: true,
linear: node.linear,
inputs: node_inputs.iter().map(|input| {input.0}).collect(),
subregion: used_subregion,
inflate: node_inflate,
},
op: op.clone(),
content_origin: DevicePoint::zero(),
extra_gpu_cache_handle: None,
}
),
).with_uv_rect_kind(node_uv_rect_kind));
// Add the dependencies for inputs of this node, which will
// be used by add_svg_filter_node_instances later
for (_input, input_task) in &node_inputs {
if *input_task == original_task_id {
made_dependency_on_source = true;
}
if *input_task != RenderTaskId::INVALID {
frame_state.rg_builder.add_dependency(task_id, *input_task);
}
}
}
}
// We track the tasks we created by output buffer id to make it easy
// to look them up quickly, since nodes can only depend on previous
// nodes in the same list
task_by_buffer_id[filter_index] = task_id;
subregion_by_buffer_id[filter_index] = used_subregion;
// The final task we create is the output picture.
output_task_id = task_id;
if create_output_task {
// If the final node subregion is smaller than the output rect,
// we need to pad it with transparent black to match SVG spec,
// as the output task rect is larger than the invalidated area,
// ideally the origin and size of the picture we return should
// be used instead of the get_rect result for sizing geometry,
// as it would allow us to produce a much smaller rect.
let output_uv_rect_kind =
uv_rect_kind_for_task_size(surface_rects_task_size, 0);
task_id = frame_state.rg_builder.add().init(RenderTask::new_dynamic(
surface_rects_task_size,
RenderTaskKind::SVGFENode(
SVGFEFilterTask{
node: FilterGraphNode{
kept_by_optimizer: true,
linear: false,
inputs: [FilterGraphPictureReference{
buffer_id: FilterOpGraphPictureBufferId::None,
subregion: used_subregion,
offset: LayoutVector2D::zero(),
inflate: node_inflate,
source_padding: LayoutRect::zero(),
target_padding: LayoutRect::zero(),
}].to_vec(),
subregion: output_subregion,
inflate: 0,
},
op: FilterGraphOp::SVGFEIdentity,
content_origin: surface_rects_clipped.min,
extra_gpu_cache_handle: None,
}
),
).with_uv_rect_kind(output_uv_rect_kind));
frame_state.rg_builder.add_dependency(task_id, output_task_id);
output_task_id = task_id;
}
}
// If no tasks referenced the SourceGraphic, we actually have to create
// a fake dependency so that it does not leak.
if !made_dependency_on_source && output_task_id != original_task_id {
frame_state.rg_builder.add_dependency(output_task_id, original_task_id);
}
output_task_id
}
pub fn uv_rect_kind(&self) -> UvRectKind {
self.uv_rect_kind
}
pub fn get_texture_address(&self, gpu_cache: &GpuCache) -> GpuCacheAddress {
gpu_cache.get_address(&self.uv_rect_handle)
}
pub fn get_target_texture(&self) -> CacheTextureId {
match self.location {
RenderTaskLocation::Dynamic { texture_id, .. } => {
assert_ne!(texture_id, CacheTextureId::INVALID);
texture_id
}
RenderTaskLocation::Existing { .. } |
RenderTaskLocation::CacheRequest { .. } |
RenderTaskLocation::Unallocated { .. } |
RenderTaskLocation::Static { .. } => {
unreachable!();
}
}
}
pub fn get_texture_source(&self) -> TextureSource {
match self.location {
RenderTaskLocation::Dynamic { texture_id, .. } => {
assert_ne!(texture_id, CacheTextureId::INVALID);
TextureSource::TextureCache(texture_id, Swizzle::default())
}
RenderTaskLocation::Static { surface: StaticRenderTaskSurface::ReadOnly { source }, .. } => {
source
}
RenderTaskLocation::Static { surface: StaticRenderTaskSurface::TextureCache { texture, .. }, .. } => {
TextureSource::TextureCache(texture, Swizzle::default())
}
RenderTaskLocation::Existing { .. } |
RenderTaskLocation::Static { .. } |
RenderTaskLocation::CacheRequest { .. } |
RenderTaskLocation::Unallocated { .. } => {
unreachable!();
}
}
}
pub fn get_target_rect(&self) -> DeviceIntRect {
match self.location {
// Previously, we only added render tasks after the entire
// primitive chain was determined visible. This meant that
// we could assert any render task in the list was also
// allocated (assigned to passes). Now, we add render
// tasks earlier, and the picture they belong to may be
// culled out later, so we can't assert that the task
// has been allocated.
// Render tasks that are created but not assigned to
// passes consume a row in the render task texture, but
// don't allocate any space in render targets nor
// draw any pixels.
// TODO(gw): Consider some kind of tag or other method
// to mark a task as unused explicitly. This
// would allow us to restore this debug check.
RenderTaskLocation::Dynamic { rect, .. } => rect,
RenderTaskLocation::Static { rect, .. } => rect,
RenderTaskLocation::Existing { .. } |
RenderTaskLocation::CacheRequest { .. } |
RenderTaskLocation::Unallocated { .. } => {
panic!("bug: get_target_rect called before allocating");
}
}
}
pub fn get_target_size(&self) -> DeviceIntSize {
match self.location {
RenderTaskLocation::Dynamic { rect, .. } => rect.size(),
RenderTaskLocation::Static { rect, .. } => rect.size(),
RenderTaskLocation::Existing { size, .. } => size,
RenderTaskLocation::CacheRequest { size } => size,
RenderTaskLocation::Unallocated { size } => size,
}
}
pub fn target_kind(&self) -> RenderTargetKind {
self.kind.target_kind()
}
pub fn write_gpu_blocks(
&mut self,
target_rect: DeviceIntRect,
gpu_cache: &mut GpuCache,
) {
profile_scope!("write_gpu_blocks");
self.kind.write_gpu_blocks(gpu_cache);
if self.cache_handle.is_some() {
// The uv rect handle of cached render tasks is requested and set by the
// render task cache.
return;
}
if let Some(mut request) = gpu_cache.request(&mut self.uv_rect_handle) {
let p0 = target_rect.min.to_f32();
let p1 = target_rect.max.to_f32();
let image_source = ImageSource {
p0,
p1,
user_data: [0.0; 4],
uv_rect_kind: self.uv_rect_kind,
};
image_source.write_gpu_blocks(&mut request);
}
}
/// Called by the render task cache.
///
/// Tells the render task that it is cached (which means its gpu cache
/// handle is managed by the texture cache).
pub fn mark_cached(&mut self, handle: RenderTaskCacheEntryHandle) {
self.cache_handle = Some(handle);
}
}