1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
// Copyright 2006 The Android Open Source Project
// Copyright 2020 Yevhenii Reizner
//
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use alloc::vec;
use alloc::vec::Vec;
use core::convert::TryFrom;
use core::num::NonZeroU16;
use crate::color::AlphaU8;
use crate::LengthU32;
pub type AlphaRun = Option<NonZeroU16>;
/// Sparse array of run-length-encoded alpha (supersampling coverage) values.
///
/// Sparseness allows us to independently compose several paths into the
/// same AlphaRuns buffer.
pub struct AlphaRuns {
pub runs: Vec<AlphaRun>,
pub alpha: Vec<u8>,
}
impl AlphaRuns {
pub fn new(width: LengthU32) -> Self {
let mut runs = AlphaRuns {
runs: vec![None; (width.get() + 1) as usize],
alpha: vec![0; (width.get() + 1) as usize],
};
runs.reset(width);
runs
}
/// Returns 0-255 given 0-256.
pub fn catch_overflow(alpha: u16) -> AlphaU8 {
debug_assert!(alpha <= 256);
(alpha - (alpha >> 8)) as u8
}
/// Returns true if the scanline contains only a single run, of alpha value 0.
pub fn is_empty(&self) -> bool {
debug_assert!(self.runs[0].is_some());
match self.runs[0] {
Some(run) => self.alpha[0] == 0 && self.runs[usize::from(run.get())].is_none(),
None => true,
}
}
/// Reinitialize for a new scanline.
pub fn reset(&mut self, width: LengthU32) {
let run = u16::try_from(width.get()).unwrap();
self.runs[0] = NonZeroU16::new(run);
self.runs[width.get() as usize] = None;
self.alpha[0] = 0;
}
/// Insert into the buffer a run starting at (x-offset_x).
///
/// if start_alpha > 0
/// one pixel with value += start_alpha,
/// max 255
/// if middle_count > 0
/// middle_count pixels with value += max_value
/// if stop_alpha > 0
/// one pixel with value += stop_alpha
///
/// Returns the offset_x value that should be passed on the next call,
/// assuming we're on the same scanline. If the caller is switching
/// scanlines, then offset_x should be 0 when this is called.
pub fn add(
&mut self,
x: u32,
start_alpha: AlphaU8,
mut middle_count: usize,
stop_alpha: AlphaU8,
max_value: u8,
offset_x: usize,
) -> usize {
let mut x = x as usize;
let mut runs_offset = offset_x;
let mut alpha_offset = offset_x;
let mut last_alpha_offset = offset_x;
x -= offset_x;
if start_alpha != 0 {
Self::break_run(
&mut self.runs[runs_offset..],
&mut self.alpha[alpha_offset..],
x,
1,
);
// I should be able to just add alpha[x] + start_alpha.
// However, if the trailing edge of the previous span and the leading
// edge of the current span round to the same super-sampled x value,
// I might overflow to 256 with this add, hence the funny subtract (crud).
let tmp = u16::from(self.alpha[alpha_offset + x]) + u16::from(start_alpha);
debug_assert!(tmp <= 256);
// was (tmp >> 7), but that seems wrong if we're trying to catch 256
self.alpha[alpha_offset + x] = (tmp - (tmp >> 8)) as u8;
runs_offset += x + 1;
alpha_offset += x + 1;
x = 0;
}
if middle_count != 0 {
Self::break_run(
&mut self.runs[runs_offset..],
&mut self.alpha[alpha_offset..],
x,
middle_count,
);
alpha_offset += x;
runs_offset += x;
x = 0;
loop {
let a = Self::catch_overflow(
u16::from(self.alpha[alpha_offset]) + u16::from(max_value),
);
self.alpha[alpha_offset] = a;
let n = usize::from(self.runs[runs_offset].unwrap().get());
debug_assert!(n <= middle_count);
alpha_offset += n;
runs_offset += n;
middle_count -= n;
if middle_count == 0 {
break;
}
}
last_alpha_offset = alpha_offset;
}
if stop_alpha != 0 {
Self::break_run(
&mut self.runs[runs_offset..],
&mut self.alpha[alpha_offset..],
x,
1,
);
alpha_offset += x;
self.alpha[alpha_offset] += stop_alpha;
last_alpha_offset = alpha_offset;
}
// new offset_x
last_alpha_offset
}
/// Break the runs in the buffer at offsets x and x+count, properly
/// updating the runs to the right and left.
///
/// i.e. from the state AAAABBBB, run-length encoded as A4B4,
/// break_run(..., 2, 5) would produce AAAABBBB rle as A2A2B3B1.
/// Allows add() to sum another run to some of the new sub-runs.
/// i.e. adding ..CCCCC. would produce AADDEEEB, rle as A2D2E3B1.
fn break_run(runs: &mut [AlphaRun], alpha: &mut [u8], mut x: usize, count: usize) {
debug_assert!(count > 0);
let orig_x = x;
let mut runs_offset = 0;
let mut alpha_offset = 0;
while x > 0 {
let n = usize::from(runs[runs_offset].unwrap().get());
debug_assert!(n > 0);
if x < n {
alpha[alpha_offset + x] = alpha[alpha_offset];
runs[runs_offset + 0] = NonZeroU16::new(x as u16);
runs[runs_offset + x] = NonZeroU16::new((n - x) as u16);
break;
}
runs_offset += n;
alpha_offset += n;
x -= n;
}
runs_offset = orig_x;
alpha_offset = orig_x;
x = count;
loop {
let n = usize::from(runs[runs_offset].unwrap().get());
debug_assert!(n > 0);
if x < n {
alpha[alpha_offset + x] = alpha[alpha_offset];
runs[runs_offset + 0] = NonZeroU16::new(x as u16);
runs[runs_offset + x] = NonZeroU16::new((n - x) as u16);
break;
}
x -= n;
if x == 0 {
break;
}
runs_offset += n;
alpha_offset += n;
}
}
/// Cut (at offset x in the buffer) a run into two shorter runs with
/// matching alpha values.
///
/// Used by the RectClipBlitter to trim a RLE encoding to match the
/// clipping rectangle.
pub fn break_at(alpha: &mut [AlphaU8], runs: &mut [AlphaRun], mut x: i32) {
let mut alpha_i = 0;
let mut run_i = 0;
while x > 0 {
let n = runs[run_i].unwrap().get();
let n_usize = usize::from(n);
let n_i32 = i32::from(n);
if x < n_i32 {
alpha[alpha_i + x as usize] = alpha[alpha_i];
runs[0] = NonZeroU16::new(x as u16);
runs[x as usize] = NonZeroU16::new((n_i32 - x) as u16);
break;
}
run_i += n_usize;
alpha_i += n_usize;
x -= n_i32;
}
}
}