1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
//! Parse the Linux vDSO.
//!
//! The following code is transliterated from
//! tools/testing/selftests/vDSO/parse_vdso.c in Linux 5.11, which is licensed
//! with Creative Commons Zero License, version 1.0,
//! available at <https://creativecommons.org/publicdomain/zero/1.0/legalcode>
//!
//! # Safety
//!
//! Parsing the vDSO involves a lot of raw pointer manipulation. This
//! implementation follows Linux's reference implementation, and adds several
//! additional safety checks.
#![allow(unsafe_code)]

use super::c;
use crate::ffi::CStr;
use crate::utils::check_raw_pointer;
use core::ffi::c_void;
use core::mem::size_of;
use core::ptr::{null, null_mut};
use linux_raw_sys::elf::*;

pub(super) struct Vdso {
    // Load information
    load_addr: *const Elf_Ehdr,
    load_end: *const c_void, // the end of the `PT_LOAD` segment
    pv_offset: usize,        // recorded paddr - recorded vaddr

    // Symbol table
    symtab: *const Elf_Sym,
    symstrings: *const u8,
    bucket: *const u32,
    chain: *const u32,
    nbucket: u32,
    //nchain: u32,

    // Version table
    versym: *const u16,
    verdef: *const Elf_Verdef,
}

// Straight from the ELF specification.
fn elf_hash(name: &CStr) -> u32 {
    let mut h: u32 = 0;
    for b in name.to_bytes() {
        h = (h << 4).wrapping_add(u32::from(*b));
        let g = h & 0xf000_0000;
        if g != 0 {
            h ^= g >> 24;
        }
        h &= !g;
    }
    h
}

/// Create a `Vdso` value by parsing the vDSO at the `sysinfo_ehdr` address.
fn init_from_sysinfo_ehdr() -> Option<Vdso> {
    // SAFETY: The auxv initialization code does extensive checks to ensure
    // that the value we get really is an `AT_SYSINFO_EHDR` value from the
    // kernel.
    unsafe {
        let hdr = super::param::auxv::sysinfo_ehdr();

        // If the platform doesn't provide a `AT_SYSINFO_EHDR`, we can't locate
        // the vDSO.
        if hdr.is_null() {
            return None;
        }

        let mut vdso = Vdso {
            load_addr: hdr,
            load_end: hdr.cast(),
            pv_offset: 0,
            symtab: null(),
            symstrings: null(),
            bucket: null(),
            chain: null(),
            nbucket: 0,
            //nchain: 0,
            versym: null(),
            verdef: null(),
        };

        let hdr = &*hdr;
        let pt = check_raw_pointer::<Elf_Phdr>(vdso.base_plus(hdr.e_phoff)? as *mut _)?.as_ptr();
        let mut dyn_: *const Elf_Dyn = null();
        let mut num_dyn = 0;

        // We need two things from the segment table: the load offset
        // and the dynamic table.
        let mut found_vaddr = false;
        for i in 0..hdr.e_phnum {
            let phdr = &*pt.add(i as usize);
            if phdr.p_flags & PF_W != 0 {
                // Don't trust any vDSO that claims to be loading writable
                // segments into memory.
                return None;
            }
            if phdr.p_type == PT_LOAD && !found_vaddr {
                // The segment should be readable and executable, because it
                // contains the symbol table and the function bodies.
                if phdr.p_flags & (PF_R | PF_X) != (PF_R | PF_X) {
                    return None;
                }
                found_vaddr = true;
                vdso.load_end = vdso.base_plus(phdr.p_offset.checked_add(phdr.p_memsz)?)?;
                vdso.pv_offset = phdr.p_offset.wrapping_sub(phdr.p_vaddr);
            } else if phdr.p_type == PT_DYNAMIC {
                // If `p_offset` is zero, it's more likely that we're looking
                // at memory that has been zeroed than that the kernel has
                // somehow aliased the `Ehdr` and the `Elf_Dyn` array.
                if phdr.p_offset < size_of::<Elf_Ehdr>() {
                    return None;
                }

                dyn_ = check_raw_pointer::<Elf_Dyn>(vdso.base_plus(phdr.p_offset)? as *mut _)?
                    .as_ptr();
                num_dyn = phdr.p_memsz / size_of::<Elf_Dyn>();
            } else if phdr.p_type == PT_INTERP || phdr.p_type == PT_GNU_RELRO {
                // Don't trust any ELF image that has an “interpreter” or
                // that uses RELRO, which is likely to be a user ELF image
                // rather and not the kernel vDSO.
                return None;
            }
        }

        if !found_vaddr || dyn_.is_null() {
            return None; // Failed
        }

        // Fish out the useful bits of the dynamic table.
        let mut hash: *const u32 = null();
        vdso.symstrings = null();
        vdso.symtab = null();
        vdso.versym = null();
        vdso.verdef = null();
        let mut i = 0;
        loop {
            if i == num_dyn {
                return None;
            }
            let d = &*dyn_.add(i);
            match d.d_tag {
                DT_STRTAB => {
                    vdso.symstrings =
                        check_raw_pointer::<u8>(vdso.addr_from_elf(d.d_un.d_ptr)? as *mut _)?
                            .as_ptr();
                }
                DT_SYMTAB => {
                    vdso.symtab =
                        check_raw_pointer::<Elf_Sym>(vdso.addr_from_elf(d.d_un.d_ptr)? as *mut _)?
                            .as_ptr();
                }
                DT_HASH => {
                    hash = check_raw_pointer::<u32>(vdso.addr_from_elf(d.d_un.d_ptr)? as *mut _)?
                        .as_ptr();
                }
                DT_VERSYM => {
                    vdso.versym =
                        check_raw_pointer::<u16>(vdso.addr_from_elf(d.d_un.d_ptr)? as *mut _)?
                            .as_ptr();
                }
                DT_VERDEF => {
                    vdso.verdef = check_raw_pointer::<Elf_Verdef>(
                        vdso.addr_from_elf(d.d_un.d_ptr)? as *mut _,
                    )?
                    .as_ptr();
                }
                DT_SYMENT => {
                    if d.d_un.d_ptr != size_of::<Elf_Sym>() {
                        return None; // Failed
                    }
                }
                DT_NULL => break,
                _ => {}
            }
            i = i.checked_add(1)?;
        }
        // The upstream code checks `symstrings`, `symtab`, and `hash` for
        // null; here, `check_raw_pointer` has already done that.

        if vdso.verdef.is_null() {
            vdso.versym = null();
        }

        // Parse the hash table header.
        vdso.nbucket = *hash.add(0);
        //vdso.nchain = *hash.add(1);
        vdso.bucket = hash.add(2);
        vdso.chain = hash.add(vdso.nbucket as usize + 2);

        // That's all we need.
        Some(vdso)
    }
}

impl Vdso {
    /// Parse the vDSO.
    ///
    /// Returns `None` if the vDSO can't be located or if it doesn't conform to
    /// our expectations.
    #[inline]
    pub(super) fn new() -> Option<Self> {
        init_from_sysinfo_ehdr()
    }

    /// Check the version for a symbol.
    ///
    /// # Safety
    ///
    /// The raw pointers inside `self` must be valid.
    unsafe fn match_version(&self, mut ver: u16, name: &CStr, hash: u32) -> bool {
        // This is a helper function to check if the version indexed by
        // ver matches name (which hashes to hash).
        //
        // The version definition table is a mess, and I don't know how
        // to do this in better than linear time without allocating memory
        // to build an index. I also don't know why the table has
        // variable size entries in the first place.
        //
        // For added fun, I can't find a comprehensible specification of how
        // to parse all the weird flags in the table.
        //
        // So I just parse the whole table every time.

        // First step: find the version definition
        ver &= 0x7fff; // Apparently bit 15 means "hidden"
        let mut def = self.verdef;
        loop {
            if (*def).vd_version != VER_DEF_CURRENT {
                return false; // Failed
            }

            if ((*def).vd_flags & VER_FLG_BASE) == 0 && ((*def).vd_ndx & 0x7fff) == ver {
                break;
            }

            if (*def).vd_next == 0 {
                return false; // No definition.
            }

            def = def
                .cast::<u8>()
                .add((*def).vd_next as usize)
                .cast::<Elf_Verdef>();
        }

        // Now figure out whether it matches.
        let aux = &*(def.cast::<u8>())
            .add((*def).vd_aux as usize)
            .cast::<Elf_Verdaux>();
        (*def).vd_hash == hash
            && (name == CStr::from_ptr(self.symstrings.add(aux.vda_name as usize).cast()))
    }

    /// Look up a symbol in the vDSO.
    pub(super) fn sym(&self, version: &CStr, name: &CStr) -> *mut c::c_void {
        let ver_hash = elf_hash(version);
        let name_hash = elf_hash(name);

        // SAFETY: The pointers in `self` must be valid.
        unsafe {
            let mut chain = *self.bucket.add((name_hash % self.nbucket) as usize);

            while chain != STN_UNDEF {
                let sym = &*self.symtab.add(chain as usize);

                // Check for a defined global or weak function w/ right name.
                //
                // The reference parser in Linux's parse_vdso.c requires
                // symbols to have type `STT_FUNC`, but on powerpc64, the vDSO
                // uses `STT_NOTYPE`, so allow that too.
                if (ELF_ST_TYPE(sym.st_info) != STT_FUNC &&
                        ELF_ST_TYPE(sym.st_info) != STT_NOTYPE)
                    || (ELF_ST_BIND(sym.st_info) != STB_GLOBAL
                        && ELF_ST_BIND(sym.st_info) != STB_WEAK)
                    || sym.st_shndx == SHN_UNDEF
                    || sym.st_shndx == SHN_ABS
                    || ELF_ST_VISIBILITY(sym.st_other) != STV_DEFAULT
                    || (name != CStr::from_ptr(self.symstrings.add(sym.st_name as usize).cast()))
                    // Check symbol version.
                    || (!self.versym.is_null()
                        && !self.match_version(*self.versym.add(chain as usize), version, ver_hash))
                {
                    chain = *self.chain.add(chain as usize);
                    continue;
                }

                let sum = self.addr_from_elf(sym.st_value).unwrap();
                assert!(
                    sum as usize >= self.load_addr as usize
                        && sum as usize <= self.load_end as usize
                );
                return sum as *mut c::c_void;
            }
        }

        null_mut()
    }

    /// Add the given address to the vDSO base address.
    unsafe fn base_plus(&self, offset: usize) -> Option<*const c_void> {
        // Check for overflow.
        let _ = (self.load_addr as usize).checked_add(offset)?;
        // Add the offset to the base.
        Some(self.load_addr.cast::<u8>().add(offset).cast())
    }

    /// Translate an ELF-address-space address into a usable virtual address.
    unsafe fn addr_from_elf(&self, elf_addr: usize) -> Option<*const c_void> {
        self.base_plus(elf_addr.wrapping_add(self.pv_offset))
    }
}