1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
// Copyright 2013 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use super::UnknownUnit;
use crate::box2d::Box2D;
use crate::num::*;
use crate::point::Point2D;
use crate::scale::Scale;
use crate::side_offsets::SideOffsets2D;
use crate::size::Size2D;
use crate::vector::Vector2D;

#[cfg(feature = "bytemuck")]
use bytemuck::{Pod, Zeroable};
use num_traits::{Float, NumCast};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};

use core::borrow::Borrow;
use core::cmp::PartialOrd;
use core::fmt;
use core::hash::{Hash, Hasher};
use core::ops::{Add, Div, DivAssign, Mul, MulAssign, Range, Sub};

/// A 2d Rectangle optionally tagged with a unit.
///
/// # Representation
///
/// `Rect` is represented by an origin point and a size.
///
/// See [`Box2D`] for a rectangle represented by two endpoints.
///
/// # Empty rectangle
///
/// A rectangle is considered empty (see [`is_empty`]) if any of the following is true:
/// - it's area is empty,
/// - it's area is negative (`size.x < 0` or `size.y < 0`),
/// - it contains NaNs.
///
/// [`is_empty`]: Self::is_empty
#[repr(C)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(
    feature = "serde",
    serde(bound(serialize = "T: Serialize", deserialize = "T: Deserialize<'de>"))
)]
pub struct Rect<T, U> {
    pub origin: Point2D<T, U>,
    pub size: Size2D<T, U>,
}

#[cfg(feature = "arbitrary")]
impl<'a, T, U> arbitrary::Arbitrary<'a> for Rect<T, U>
where
    T: arbitrary::Arbitrary<'a>,
{
    fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> {
        let (origin, size) = arbitrary::Arbitrary::arbitrary(u)?;
        Ok(Rect { origin, size })
    }
}

#[cfg(feature = "bytemuck")]
unsafe impl<T: Zeroable, U> Zeroable for Rect<T, U> {}

#[cfg(feature = "bytemuck")]
unsafe impl<T: Pod, U: 'static> Pod for Rect<T, U> {}

impl<T: Hash, U> Hash for Rect<T, U> {
    fn hash<H: Hasher>(&self, h: &mut H) {
        self.origin.hash(h);
        self.size.hash(h);
    }
}

impl<T: Copy, U> Copy for Rect<T, U> {}

impl<T: Clone, U> Clone for Rect<T, U> {
    fn clone(&self) -> Self {
        Self::new(self.origin.clone(), self.size.clone())
    }
}

impl<T: PartialEq, U> PartialEq for Rect<T, U> {
    fn eq(&self, other: &Self) -> bool {
        self.origin.eq(&other.origin) && self.size.eq(&other.size)
    }
}

impl<T: Eq, U> Eq for Rect<T, U> {}

impl<T: fmt::Debug, U> fmt::Debug for Rect<T, U> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "Rect(")?;
        fmt::Debug::fmt(&self.size, f)?;
        write!(f, " at ")?;
        fmt::Debug::fmt(&self.origin, f)?;
        write!(f, ")")
    }
}

impl<T: Default, U> Default for Rect<T, U> {
    fn default() -> Self {
        Rect::new(Default::default(), Default::default())
    }
}

impl<T, U> Rect<T, U> {
    /// Constructor.
    #[inline]
    pub const fn new(origin: Point2D<T, U>, size: Size2D<T, U>) -> Self {
        Rect { origin, size }
    }
}

impl<T, U> Rect<T, U>
where
    T: Zero,
{
    /// Constructor, setting all sides to zero.
    #[inline]
    pub fn zero() -> Self {
        Rect::new(Point2D::origin(), Size2D::zero())
    }

    /// Creates a rect of the given size, at offset zero.
    #[inline]
    pub fn from_size(size: Size2D<T, U>) -> Self {
        Rect {
            origin: Point2D::zero(),
            size,
        }
    }
}

impl<T, U> Rect<T, U>
where
    T: Copy + Add<T, Output = T>,
{
    #[inline]
    pub fn min(&self) -> Point2D<T, U> {
        self.origin
    }

    #[inline]
    pub fn max(&self) -> Point2D<T, U> {
        self.origin + self.size
    }

    #[inline]
    pub fn max_x(&self) -> T {
        self.origin.x + self.size.width
    }

    #[inline]
    pub fn min_x(&self) -> T {
        self.origin.x
    }

    #[inline]
    pub fn max_y(&self) -> T {
        self.origin.y + self.size.height
    }

    #[inline]
    pub fn min_y(&self) -> T {
        self.origin.y
    }

    #[inline]
    pub fn width(&self) -> T {
        self.size.width
    }

    #[inline]
    pub fn height(&self) -> T {
        self.size.height
    }

    #[inline]
    pub fn x_range(&self) -> Range<T> {
        self.min_x()..self.max_x()
    }

    #[inline]
    pub fn y_range(&self) -> Range<T> {
        self.min_y()..self.max_y()
    }

    /// Returns the same rectangle, translated by a vector.
    #[inline]
    #[must_use]
    pub fn translate(&self, by: Vector2D<T, U>) -> Self {
        Self::new(self.origin + by, self.size)
    }

    #[inline]
    pub fn to_box2d(&self) -> Box2D<T, U> {
        Box2D {
            min: self.min(),
            max: self.max(),
        }
    }
}

impl<T, U> Rect<T, U>
where
    T: Copy + PartialOrd + Add<T, Output = T>,
{
    /// Returns `true` if this rectangle contains the point. Points are considered
    /// in the rectangle if they are on the left or top edge, but outside if they
    /// are on the right or bottom edge.
    #[inline]
    pub fn contains(&self, p: Point2D<T, U>) -> bool {
        self.to_box2d().contains(p)
    }

    #[inline]
    pub fn intersects(&self, other: &Self) -> bool {
        self.to_box2d().intersects(&other.to_box2d())
    }
}

impl<T, U> Rect<T, U>
where
    T: Copy + PartialOrd + Add<T, Output = T> + Sub<T, Output = T>,
{
    #[inline]
    pub fn intersection(&self, other: &Self) -> Option<Self> {
        let box2d = self.to_box2d().intersection_unchecked(&other.to_box2d());

        if box2d.is_empty() {
            return None;
        }

        Some(box2d.to_rect())
    }
}

impl<T, U> Rect<T, U>
where
    T: Copy + Add<T, Output = T> + Sub<T, Output = T>,
{
    #[inline]
    #[must_use]
    pub fn inflate(&self, width: T, height: T) -> Self {
        Rect::new(
            Point2D::new(self.origin.x - width, self.origin.y - height),
            Size2D::new(
                self.size.width + width + width,
                self.size.height + height + height,
            ),
        )
    }
}

impl<T, U> Rect<T, U>
where
    T: Copy + Zero + PartialOrd + Add<T, Output = T>,
{
    /// Returns `true` if this rectangle contains the interior of `rect`. Always
    /// returns `true` if `rect` is empty, and always returns `false` if `rect` is
    /// nonempty but this rectangle is empty.
    #[inline]
    pub fn contains_rect(&self, rect: &Self) -> bool {
        rect.is_empty()
            || (self.min_x() <= rect.min_x()
                && rect.max_x() <= self.max_x()
                && self.min_y() <= rect.min_y()
                && rect.max_y() <= self.max_y())
    }
}

impl<T, U> Rect<T, U>
where
    T: Copy + Zero + PartialOrd + Add<T, Output = T> + Sub<T, Output = T>,
{
    /// Calculate the size and position of an inner rectangle.
    ///
    /// Subtracts the side offsets from all sides. The horizontal and vertical
    /// offsets must not be larger than the original side length.
    /// This method assumes y oriented downward.
    pub fn inner_rect(&self, offsets: SideOffsets2D<T, U>) -> Self {
        let rect = Rect::new(
            Point2D::new(self.origin.x + offsets.left, self.origin.y + offsets.top),
            Size2D::new(
                self.size.width - offsets.horizontal(),
                self.size.height - offsets.vertical(),
            ),
        );
        debug_assert!(rect.size.width >= Zero::zero());
        debug_assert!(rect.size.height >= Zero::zero());
        rect
    }
}

impl<T, U> Rect<T, U>
where
    T: Copy + Add<T, Output = T> + Sub<T, Output = T>,
{
    /// Calculate the size and position of an outer rectangle.
    ///
    /// Add the offsets to all sides. The expanded rectangle is returned.
    /// This method assumes y oriented downward.
    pub fn outer_rect(&self, offsets: SideOffsets2D<T, U>) -> Self {
        Rect::new(
            Point2D::new(self.origin.x - offsets.left, self.origin.y - offsets.top),
            Size2D::new(
                self.size.width + offsets.horizontal(),
                self.size.height + offsets.vertical(),
            ),
        )
    }
}

impl<T, U> Rect<T, U>
where
    T: Copy + Zero + PartialOrd + Sub<T, Output = T>,
{
    /// Returns the smallest rectangle defined by the top/bottom/left/right-most
    /// points provided as parameter.
    ///
    /// Note: This function has a behavior that can be surprising because
    /// the right-most and bottom-most points are exactly on the edge
    /// of the rectangle while the `contains` function is has exclusive
    /// semantic on these edges. This means that the right-most and bottom-most
    /// points provided to `from_points` will count as not contained by the rect.
    /// This behavior may change in the future.
    pub fn from_points<I>(points: I) -> Self
    where
        I: IntoIterator,
        I::Item: Borrow<Point2D<T, U>>,
    {
        Box2D::from_points(points).to_rect()
    }
}

impl<T, U> Rect<T, U>
where
    T: Copy + One + Add<Output = T> + Sub<Output = T> + Mul<Output = T>,
{
    /// Linearly interpolate between this rectangle and another rectangle.
    #[inline]
    pub fn lerp(&self, other: Self, t: T) -> Self {
        Self::new(
            self.origin.lerp(other.origin, t),
            self.size.lerp(other.size, t),
        )
    }
}

impl<T, U> Rect<T, U>
where
    T: Copy + One + Add<Output = T> + Div<Output = T>,
{
    pub fn center(&self) -> Point2D<T, U> {
        let two = T::one() + T::one();
        self.origin + self.size.to_vector() / two
    }
}

impl<T, U> Rect<T, U>
where
    T: Copy + PartialOrd + Add<T, Output = T> + Sub<T, Output = T> + Zero,
{
    #[inline]
    pub fn union(&self, other: &Self) -> Self {
        self.to_box2d().union(&other.to_box2d()).to_rect()
    }
}

impl<T, U> Rect<T, U> {
    #[inline]
    pub fn scale<S: Copy>(&self, x: S, y: S) -> Self
    where
        T: Copy + Mul<S, Output = T>,
    {
        Rect::new(
            Point2D::new(self.origin.x * x, self.origin.y * y),
            Size2D::new(self.size.width * x, self.size.height * y),
        )
    }
}

impl<T: Copy + Mul<T, Output = T>, U> Rect<T, U> {
    #[inline]
    pub fn area(&self) -> T {
        self.size.area()
    }
}

impl<T: Copy + Zero + PartialOrd, U> Rect<T, U> {
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.size.is_empty()
    }
}

impl<T: Copy + Zero + PartialOrd, U> Rect<T, U> {
    #[inline]
    pub fn to_non_empty(&self) -> Option<Self> {
        if self.is_empty() {
            return None;
        }

        Some(*self)
    }
}

impl<T: Copy + Mul, U> Mul<T> for Rect<T, U> {
    type Output = Rect<T::Output, U>;

    #[inline]
    fn mul(self, scale: T) -> Self::Output {
        Rect::new(self.origin * scale, self.size * scale)
    }
}

impl<T: Copy + MulAssign, U> MulAssign<T> for Rect<T, U> {
    #[inline]
    fn mul_assign(&mut self, scale: T) {
        *self *= Scale::new(scale);
    }
}

impl<T: Copy + Div, U> Div<T> for Rect<T, U> {
    type Output = Rect<T::Output, U>;

    #[inline]
    fn div(self, scale: T) -> Self::Output {
        Rect::new(self.origin / scale.clone(), self.size / scale)
    }
}

impl<T: Copy + DivAssign, U> DivAssign<T> for Rect<T, U> {
    #[inline]
    fn div_assign(&mut self, scale: T) {
        *self /= Scale::new(scale);
    }
}

impl<T: Copy + Mul, U1, U2> Mul<Scale<T, U1, U2>> for Rect<T, U1> {
    type Output = Rect<T::Output, U2>;

    #[inline]
    fn mul(self, scale: Scale<T, U1, U2>) -> Self::Output {
        Rect::new(self.origin * scale.clone(), self.size * scale)
    }
}

impl<T: Copy + MulAssign, U> MulAssign<Scale<T, U, U>> for Rect<T, U> {
    #[inline]
    fn mul_assign(&mut self, scale: Scale<T, U, U>) {
        self.origin *= scale.clone();
        self.size *= scale;
    }
}

impl<T: Copy + Div, U1, U2> Div<Scale<T, U1, U2>> for Rect<T, U2> {
    type Output = Rect<T::Output, U1>;

    #[inline]
    fn div(self, scale: Scale<T, U1, U2>) -> Self::Output {
        Rect::new(self.origin / scale.clone(), self.size / scale)
    }
}

impl<T: Copy + DivAssign, U> DivAssign<Scale<T, U, U>> for Rect<T, U> {
    #[inline]
    fn div_assign(&mut self, scale: Scale<T, U, U>) {
        self.origin /= scale.clone();
        self.size /= scale;
    }
}

impl<T: Copy, U> Rect<T, U> {
    /// Drop the units, preserving only the numeric value.
    #[inline]
    pub fn to_untyped(&self) -> Rect<T, UnknownUnit> {
        Rect::new(self.origin.to_untyped(), self.size.to_untyped())
    }

    /// Tag a unitless value with units.
    #[inline]
    pub fn from_untyped(r: &Rect<T, UnknownUnit>) -> Rect<T, U> {
        Rect::new(
            Point2D::from_untyped(r.origin),
            Size2D::from_untyped(r.size),
        )
    }

    /// Cast the unit
    #[inline]
    pub fn cast_unit<V>(&self) -> Rect<T, V> {
        Rect::new(self.origin.cast_unit(), self.size.cast_unit())
    }
}

impl<T: NumCast + Copy, U> Rect<T, U> {
    /// Cast from one numeric representation to another, preserving the units.
    ///
    /// When casting from floating point to integer coordinates, the decimals are truncated
    /// as one would expect from a simple cast, but this behavior does not always make sense
    /// geometrically. Consider using [`round`], [`round_in`] or [`round_out`] before casting.
    ///
    /// [`round`]: Self::round
    /// [`round_in`]: Self::round_in
    /// [`round_out`]: Self::round_out
    #[inline]
    pub fn cast<NewT: NumCast>(&self) -> Rect<NewT, U> {
        Rect::new(self.origin.cast(), self.size.cast())
    }

    /// Fallible cast from one numeric representation to another, preserving the units.
    ///
    /// When casting from floating point to integer coordinates, the decimals are truncated
    /// as one would expect from a simple cast, but this behavior does not always make sense
    /// geometrically. Consider using [`round`], [`round_in`] or [`round_out` before casting.
    ///
    /// [`round`]: Self::round
    /// [`round_in`]: Self::round_in
    /// [`round_out`]: Self::round_out
    pub fn try_cast<NewT: NumCast>(&self) -> Option<Rect<NewT, U>> {
        match (self.origin.try_cast(), self.size.try_cast()) {
            (Some(origin), Some(size)) => Some(Rect::new(origin, size)),
            _ => None,
        }
    }

    // Convenience functions for common casts

    /// Cast into an `f32` rectangle.
    #[inline]
    pub fn to_f32(&self) -> Rect<f32, U> {
        self.cast()
    }

    /// Cast into an `f64` rectangle.
    #[inline]
    pub fn to_f64(&self) -> Rect<f64, U> {
        self.cast()
    }

    /// Cast into an `usize` rectangle, truncating decimals if any.
    ///
    /// When casting from floating point rectangles, it is worth considering whether
    /// to `round()`, `round_in()` or `round_out()` before the cast in order to
    /// obtain the desired conversion behavior.
    #[inline]
    pub fn to_usize(&self) -> Rect<usize, U> {
        self.cast()
    }

    /// Cast into an `u32` rectangle, truncating decimals if any.
    ///
    /// When casting from floating point rectangles, it is worth considering whether
    /// to `round()`, `round_in()` or `round_out()` before the cast in order to
    /// obtain the desired conversion behavior.
    #[inline]
    pub fn to_u32(&self) -> Rect<u32, U> {
        self.cast()
    }

    /// Cast into an `u64` rectangle, truncating decimals if any.
    ///
    /// When casting from floating point rectangles, it is worth considering whether
    /// to `round()`, `round_in()` or `round_out()` before the cast in order to
    /// obtain the desired conversion behavior.
    #[inline]
    pub fn to_u64(&self) -> Rect<u64, U> {
        self.cast()
    }

    /// Cast into an `i32` rectangle, truncating decimals if any.
    ///
    /// When casting from floating point rectangles, it is worth considering whether
    /// to `round()`, `round_in()` or `round_out()` before the cast in order to
    /// obtain the desired conversion behavior.
    #[inline]
    pub fn to_i32(&self) -> Rect<i32, U> {
        self.cast()
    }

    /// Cast into an `i64` rectangle, truncating decimals if any.
    ///
    /// When casting from floating point rectangles, it is worth considering whether
    /// to `round()`, `round_in()` or `round_out()` before the cast in order to
    /// obtain the desired conversion behavior.
    #[inline]
    pub fn to_i64(&self) -> Rect<i64, U> {
        self.cast()
    }
}

impl<T: Float, U> Rect<T, U> {
    /// Returns `true` if all members are finite.
    #[inline]
    pub fn is_finite(self) -> bool {
        self.origin.is_finite() && self.size.is_finite()
    }
}

impl<T: Floor + Ceil + Round + Add<T, Output = T> + Sub<T, Output = T>, U> Rect<T, U> {
    /// Return a rectangle with edges rounded to integer coordinates, such that
    /// the returned rectangle has the same set of pixel centers as the original
    /// one.
    /// Edges at offset 0.5 round up.
    /// Suitable for most places where integral device coordinates
    /// are needed, but note that any translation should be applied first to
    /// avoid pixel rounding errors.
    /// Note that this is *not* rounding to nearest integer if the values are negative.
    /// They are always rounding as floor(n + 0.5).
    ///
    /// # Usage notes
    /// Note, that when using with floating-point `T` types that method can significantly
    /// lose precision for large values, so if you need to call this method very often it
    /// is better to use [`Box2D`].
    #[must_use]
    pub fn round(&self) -> Self {
        self.to_box2d().round().to_rect()
    }

    /// Return a rectangle with edges rounded to integer coordinates, such that
    /// the original rectangle contains the resulting rectangle.
    ///
    /// # Usage notes
    /// Note, that when using with floating-point `T` types that method can significantly
    /// lose precision for large values, so if you need to call this method very often it
    /// is better to use [`Box2D`].
    #[must_use]
    pub fn round_in(&self) -> Self {
        self.to_box2d().round_in().to_rect()
    }

    /// Return a rectangle with edges rounded to integer coordinates, such that
    /// the original rectangle is contained in the resulting rectangle.
    ///
    /// # Usage notes
    /// Note, that when using with floating-point `T` types that method can significantly
    /// lose precision for large values, so if you need to call this method very often it
    /// is better to use [`Box2D`].
    #[must_use]
    pub fn round_out(&self) -> Self {
        self.to_box2d().round_out().to_rect()
    }
}

impl<T, U> From<Size2D<T, U>> for Rect<T, U>
where
    T: Zero,
{
    fn from(size: Size2D<T, U>) -> Self {
        Self::from_size(size)
    }
}

/// Shorthand for `Rect::new(Point2D::new(x, y), Size2D::new(w, h))`.
pub const fn rect<T, U>(x: T, y: T, w: T, h: T) -> Rect<T, U> {
    Rect::new(Point2D::new(x, y), Size2D::new(w, h))
}

#[cfg(test)]
mod tests {
    use crate::default::{Point2D, Rect, Size2D};
    use crate::side_offsets::SideOffsets2D;
    use crate::{point2, rect, size2, vec2};

    #[test]
    fn test_translate() {
        let p = Rect::new(Point2D::new(0u32, 0u32), Size2D::new(50u32, 40u32));
        let pp = p.translate(vec2(10, 15));

        assert!(pp.size.width == 50);
        assert!(pp.size.height == 40);
        assert!(pp.origin.x == 10);
        assert!(pp.origin.y == 15);

        let r = Rect::new(Point2D::new(-10, -5), Size2D::new(50, 40));
        let rr = r.translate(vec2(0, -10));

        assert!(rr.size.width == 50);
        assert!(rr.size.height == 40);
        assert!(rr.origin.x == -10);
        assert!(rr.origin.y == -15);
    }

    #[test]
    fn test_union() {
        let p = Rect::new(Point2D::new(0, 0), Size2D::new(50, 40));
        let q = Rect::new(Point2D::new(20, 20), Size2D::new(5, 5));
        let r = Rect::new(Point2D::new(-15, -30), Size2D::new(200, 15));
        let s = Rect::new(Point2D::new(20, -15), Size2D::new(250, 200));

        let pq = p.union(&q);
        assert!(pq.origin == Point2D::new(0, 0));
        assert!(pq.size == Size2D::new(50, 40));

        let pr = p.union(&r);
        assert!(pr.origin == Point2D::new(-15, -30));
        assert!(pr.size == Size2D::new(200, 70));

        let ps = p.union(&s);
        assert!(ps.origin == Point2D::new(0, -15));
        assert!(ps.size == Size2D::new(270, 200));
    }

    #[test]
    fn test_intersection() {
        let p = Rect::new(Point2D::new(0, 0), Size2D::new(10, 20));
        let q = Rect::new(Point2D::new(5, 15), Size2D::new(10, 10));
        let r = Rect::new(Point2D::new(-5, -5), Size2D::new(8, 8));

        let pq = p.intersection(&q);
        assert!(pq.is_some());
        let pq = pq.unwrap();
        assert!(pq.origin == Point2D::new(5, 15));
        assert!(pq.size == Size2D::new(5, 5));

        let pr = p.intersection(&r);
        assert!(pr.is_some());
        let pr = pr.unwrap();
        assert!(pr.origin == Point2D::new(0, 0));
        assert!(pr.size == Size2D::new(3, 3));

        let qr = q.intersection(&r);
        assert!(qr.is_none());
    }

    #[test]
    fn test_intersection_overflow() {
        // test some scenarios where the intersection can overflow but
        // the min_x() and max_x() don't. Gecko currently fails these cases
        let p = Rect::new(Point2D::new(-2147483648, -2147483648), Size2D::new(0, 0));
        let q = Rect::new(
            Point2D::new(2136893440, 2136893440),
            Size2D::new(279552, 279552),
        );
        let r = Rect::new(Point2D::new(-2147483648, -2147483648), Size2D::new(1, 1));

        assert!(p.is_empty());
        let pq = p.intersection(&q);
        assert!(pq.is_none());

        let qr = q.intersection(&r);
        assert!(qr.is_none());
    }

    #[test]
    fn test_contains() {
        let r = Rect::new(Point2D::new(-20, 15), Size2D::new(100, 200));

        assert!(r.contains(Point2D::new(0, 50)));
        assert!(r.contains(Point2D::new(-10, 200)));

        // The `contains` method is inclusive of the top/left edges, but not the
        // bottom/right edges.
        assert!(r.contains(Point2D::new(-20, 15)));
        assert!(!r.contains(Point2D::new(80, 15)));
        assert!(!r.contains(Point2D::new(80, 215)));
        assert!(!r.contains(Point2D::new(-20, 215)));

        // Points beyond the top-left corner.
        assert!(!r.contains(Point2D::new(-25, 15)));
        assert!(!r.contains(Point2D::new(-15, 10)));

        // Points beyond the top-right corner.
        assert!(!r.contains(Point2D::new(85, 20)));
        assert!(!r.contains(Point2D::new(75, 10)));

        // Points beyond the bottom-right corner.
        assert!(!r.contains(Point2D::new(85, 210)));
        assert!(!r.contains(Point2D::new(75, 220)));

        // Points beyond the bottom-left corner.
        assert!(!r.contains(Point2D::new(-25, 210)));
        assert!(!r.contains(Point2D::new(-15, 220)));

        let r = Rect::new(Point2D::new(-20.0, 15.0), Size2D::new(100.0, 200.0));
        assert!(r.contains_rect(&r));
        assert!(!r.contains_rect(&r.translate(vec2(0.1, 0.0))));
        assert!(!r.contains_rect(&r.translate(vec2(-0.1, 0.0))));
        assert!(!r.contains_rect(&r.translate(vec2(0.0, 0.1))));
        assert!(!r.contains_rect(&r.translate(vec2(0.0, -0.1))));
        // Empty rectangles are always considered as contained in other rectangles,
        // even if their origin is not.
        let p = Point2D::new(1.0, 1.0);
        assert!(!r.contains(p));
        assert!(r.contains_rect(&Rect::new(p, Size2D::zero())));
    }

    #[test]
    fn test_scale() {
        let p = Rect::new(Point2D::new(0u32, 0u32), Size2D::new(50u32, 40u32));
        let pp = p.scale(10, 15);

        assert!(pp.size.width == 500);
        assert!(pp.size.height == 600);
        assert!(pp.origin.x == 0);
        assert!(pp.origin.y == 0);

        let r = Rect::new(Point2D::new(-10, -5), Size2D::new(50, 40));
        let rr = r.scale(1, 20);

        assert!(rr.size.width == 50);
        assert!(rr.size.height == 800);
        assert!(rr.origin.x == -10);
        assert!(rr.origin.y == -100);
    }

    #[test]
    fn test_inflate() {
        let p = Rect::new(Point2D::new(0, 0), Size2D::new(10, 10));
        let pp = p.inflate(10, 20);

        assert!(pp.size.width == 30);
        assert!(pp.size.height == 50);
        assert!(pp.origin.x == -10);
        assert!(pp.origin.y == -20);

        let r = Rect::new(Point2D::new(0, 0), Size2D::new(10, 20));
        let rr = r.inflate(-2, -5);

        assert!(rr.size.width == 6);
        assert!(rr.size.height == 10);
        assert!(rr.origin.x == 2);
        assert!(rr.origin.y == 5);
    }

    #[test]
    fn test_inner_outer_rect() {
        let inner_rect = Rect::new(point2(20, 40), size2(80, 100));
        let offsets = SideOffsets2D::new(20, 10, 10, 10);
        let outer_rect = inner_rect.outer_rect(offsets);
        assert_eq!(outer_rect.origin.x, 10);
        assert_eq!(outer_rect.origin.y, 20);
        assert_eq!(outer_rect.size.width, 100);
        assert_eq!(outer_rect.size.height, 130);
        assert_eq!(outer_rect.inner_rect(offsets), inner_rect);
    }

    #[test]
    fn test_min_max_x_y() {
        let p = Rect::new(Point2D::new(0u32, 0u32), Size2D::new(50u32, 40u32));
        assert!(p.max_y() == 40);
        assert!(p.min_y() == 0);
        assert!(p.max_x() == 50);
        assert!(p.min_x() == 0);

        let r = Rect::new(Point2D::new(-10, -5), Size2D::new(50, 40));
        assert!(r.max_y() == 35);
        assert!(r.min_y() == -5);
        assert!(r.max_x() == 40);
        assert!(r.min_x() == -10);
    }

    #[test]
    fn test_width_height() {
        let r = Rect::new(Point2D::new(-10, -5), Size2D::new(50, 40));
        assert!(r.width() == 50);
        assert!(r.height() == 40);
    }

    #[test]
    fn test_is_empty() {
        assert!(Rect::new(Point2D::new(0u32, 0u32), Size2D::new(0u32, 0u32)).is_empty());
        assert!(Rect::new(Point2D::new(0u32, 0u32), Size2D::new(10u32, 0u32)).is_empty());
        assert!(Rect::new(Point2D::new(0u32, 0u32), Size2D::new(0u32, 10u32)).is_empty());
        assert!(!Rect::new(Point2D::new(0u32, 0u32), Size2D::new(1u32, 1u32)).is_empty());
        assert!(Rect::new(Point2D::new(10u32, 10u32), Size2D::new(0u32, 0u32)).is_empty());
        assert!(Rect::new(Point2D::new(10u32, 10u32), Size2D::new(10u32, 0u32)).is_empty());
        assert!(Rect::new(Point2D::new(10u32, 10u32), Size2D::new(0u32, 10u32)).is_empty());
        assert!(!Rect::new(Point2D::new(10u32, 10u32), Size2D::new(1u32, 1u32)).is_empty());
    }

    #[test]
    fn test_round() {
        let mut x = -2.0;
        let mut y = -2.0;
        let mut w = -2.0;
        let mut h = -2.0;
        while x < 2.0 {
            while y < 2.0 {
                while w < 2.0 {
                    while h < 2.0 {
                        let rect = Rect::new(Point2D::new(x, y), Size2D::new(w, h));

                        assert!(rect.contains_rect(&rect.round_in()));
                        assert!(rect.round_in().inflate(1.0, 1.0).contains_rect(&rect));

                        assert!(rect.round_out().contains_rect(&rect));
                        assert!(rect.inflate(1.0, 1.0).contains_rect(&rect.round_out()));

                        assert!(rect.inflate(1.0, 1.0).contains_rect(&rect.round()));
                        assert!(rect.round().inflate(1.0, 1.0).contains_rect(&rect));

                        h += 0.1;
                    }
                    w += 0.1;
                }
                y += 0.1;
            }
            x += 0.1
        }
    }

    #[test]
    fn test_center() {
        let r: Rect<i32> = rect(-2, 5, 4, 10);
        assert_eq!(r.center(), point2(0, 10));

        let r: Rect<f32> = rect(1.0, 2.0, 3.0, 4.0);
        assert_eq!(r.center(), point2(2.5, 4.0));
    }

    #[test]
    fn test_nan() {
        let r1: Rect<f32> = rect(-2.0, 5.0, 4.0, std::f32::NAN);
        let r2: Rect<f32> = rect(std::f32::NAN, -1.0, 3.0, 10.0);

        assert_eq!(r1.intersection(&r2), None);
    }
}