use std::cell::LazyCell;
use std::convert::From;
use std::fmt;
use std::ops::{Add, AddAssign, Neg, Sub, SubAssign};
use app_units::Au;
use serde::Serialize;
use style::logical_geometry::{BlockFlowDirection, InlineBaseDirection, WritingMode};
use style::values::computed::{
CSSPixelLength, LengthPercentage, MaxSize as StyleMaxSize, Size as StyleSize,
};
use style::values::generics::length::GenericLengthPercentageOrAuto as AutoOr;
use style::Zero;
use style_traits::CSSPixel;
use crate::sizing::ContentSizes;
use crate::style_ext::Clamp;
use crate::ContainingBlock;
pub type PhysicalPoint<U> = euclid::Point2D<U, CSSPixel>;
pub type PhysicalSize<U> = euclid::Size2D<U, CSSPixel>;
pub type PhysicalVec<U> = euclid::Vector2D<U, CSSPixel>;
pub type PhysicalRect<U> = euclid::Rect<U, CSSPixel>;
pub type PhysicalSides<U> = euclid::SideOffsets2D<U, CSSPixel>;
pub type AuOrAuto = AutoOr<Au>;
pub type LengthPercentageOrAuto<'a> = AutoOr<&'a LengthPercentage>;
#[derive(Clone, Copy, PartialEq, Serialize)]
pub struct LogicalVec2<T> {
pub inline: T,
pub block: T,
}
#[derive(Clone, Copy, Serialize)]
pub struct LogicalRect<T> {
pub start_corner: LogicalVec2<T>,
pub size: LogicalVec2<T>,
}
#[derive(Clone, Copy, Debug, Serialize)]
pub struct LogicalSides<T> {
pub inline_start: T,
pub inline_end: T,
pub block_start: T,
pub block_end: T,
}
impl<T: fmt::Debug> fmt::Debug for LogicalVec2<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.write_str("Vec2 { i: ")?;
self.inline.fmt(f)?;
f.write_str(", b: ")?;
self.block.fmt(f)?;
f.write_str(" }")
}
}
impl<T: Default> Default for LogicalVec2<T> {
fn default() -> Self {
Self {
inline: T::default(),
block: T::default(),
}
}
}
impl<T> LogicalVec2<T> {
pub fn map_inline_and_block_axes<U>(
&self,
inline_f: impl FnOnce(&T) -> U,
block_f: impl FnOnce(&T) -> U,
) -> LogicalVec2<U> {
LogicalVec2 {
inline: inline_f(&self.inline),
block: block_f(&self.block),
}
}
}
impl<T: Clone> LogicalVec2<Size<T>> {
pub fn map_inline_and_block_sizes<U>(
&self,
inline_f: impl FnOnce(T) -> U,
block_f: impl FnOnce(T) -> U,
) -> LogicalVec2<Size<U>> {
self.map_inline_and_block_axes(|size| size.map(inline_f), |size| size.map(block_f))
}
}
impl<T: Clone> LogicalVec2<T> {
pub fn from_physical_size(physical_size: &PhysicalSize<T>, mode: WritingMode) -> Self {
let (i, b) = if mode.is_horizontal() {
(&physical_size.width, &physical_size.height)
} else {
(&physical_size.height, &physical_size.width)
};
LogicalVec2 {
inline: i.clone(),
block: b.clone(),
}
}
pub fn map<U>(&self, f: impl Fn(&T) -> U) -> LogicalVec2<U> {
LogicalVec2 {
inline: f(&self.inline),
block: f(&self.block),
}
}
}
impl<T: Add<Output = T> + Copy> Add<LogicalVec2<T>> for LogicalVec2<T> {
type Output = LogicalVec2<T>;
fn add(self, other: Self) -> Self::Output {
LogicalVec2 {
inline: self.inline + other.inline,
block: self.block + other.block,
}
}
}
impl<T: Sub<Output = T> + Copy> Sub<LogicalVec2<T>> for LogicalVec2<T> {
type Output = LogicalVec2<T>;
fn sub(self, other: Self) -> Self::Output {
LogicalVec2 {
inline: self.inline - other.inline,
block: self.block - other.block,
}
}
}
impl<T: AddAssign<T> + Copy> AddAssign<LogicalVec2<T>> for LogicalVec2<T> {
fn add_assign(&mut self, other: LogicalVec2<T>) {
self.inline += other.inline;
self.block += other.block;
}
}
impl<T: SubAssign<T> + Copy> SubAssign<LogicalVec2<T>> for LogicalVec2<T> {
fn sub_assign(&mut self, other: LogicalVec2<T>) {
self.inline -= other.inline;
self.block -= other.block;
}
}
impl<T: Neg<Output = T> + Copy> Neg for LogicalVec2<T> {
type Output = LogicalVec2<T>;
fn neg(self) -> Self::Output {
Self {
inline: -self.inline,
block: -self.block,
}
}
}
impl<T: Zero> LogicalVec2<T> {
pub fn zero() -> Self {
Self {
inline: T::zero(),
block: T::zero(),
}
}
}
impl<T: Clone> LogicalVec2<AutoOr<T>> {
pub fn auto_is(&self, f: impl Fn() -> T) -> LogicalVec2<T> {
self.map(|t| t.auto_is(&f))
}
}
impl<T: Zero> LogicalRect<T> {
pub fn zero() -> Self {
Self {
start_corner: LogicalVec2::zero(),
size: LogicalVec2::zero(),
}
}
}
impl fmt::Debug for LogicalRect<Au> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"Rect(i{}×b{} @ (i{},b{}))",
self.size.inline.to_f32_px(),
self.size.block.to_f32_px(),
self.start_corner.inline.to_f32_px(),
self.start_corner.block.to_f32_px(),
)
}
}
impl<T: Clone> LogicalVec2<T> {
pub fn to_physical_size(&self, mode: WritingMode) -> PhysicalSize<T> {
let (x, y) = if mode.is_horizontal() {
(&self.inline, &self.block)
} else {
(&self.block, &self.inline)
};
PhysicalSize::new(x.clone(), y.clone())
}
}
impl<T: Copy + Neg<Output = T>> LogicalVec2<T> {
pub fn to_physical_vector(&self, mode: WritingMode) -> PhysicalVec<T> {
if mode.is_horizontal() {
if mode.is_bidi_ltr() {
PhysicalVec::new(self.inline, self.block)
} else {
PhysicalVec::new(-self.inline, self.block)
}
} else if mode.is_inline_tb() {
PhysicalVec::new(self.block, self.inline)
} else {
PhysicalVec::new(-self.block, self.inline)
}
}
}
impl<T: Clone> LogicalSides<T> {
pub fn from_physical(sides: &PhysicalSides<T>, mode: WritingMode) -> Self {
let block_flow = mode.block_flow_direction();
let (bs, be) = match mode.block_flow_direction() {
BlockFlowDirection::TopToBottom => (&sides.top, &sides.bottom),
BlockFlowDirection::RightToLeft => (&sides.right, &sides.left),
BlockFlowDirection::LeftToRight => (&sides.left, &sides.right),
};
use BlockFlowDirection::TopToBottom;
let (is, ie) = match (block_flow, mode.inline_base_direction()) {
(TopToBottom, InlineBaseDirection::LeftToRight) => (&sides.left, &sides.right),
(TopToBottom, InlineBaseDirection::RightToLeft) => (&sides.right, &sides.left),
(_, InlineBaseDirection::LeftToRight) => (&sides.top, &sides.bottom),
(_, InlineBaseDirection::RightToLeft) => (&sides.bottom, &sides.top),
};
LogicalSides {
inline_start: is.clone(),
inline_end: ie.clone(),
block_start: bs.clone(),
block_end: be.clone(),
}
}
}
impl<T> LogicalSides<T> {
pub fn map<U>(&self, f: impl Fn(&T) -> U) -> LogicalSides<U> {
LogicalSides {
inline_start: f(&self.inline_start),
inline_end: f(&self.inline_end),
block_start: f(&self.block_start),
block_end: f(&self.block_end),
}
}
pub fn map_inline_and_block_axes<U>(
&self,
inline_f: impl Fn(&T) -> U,
block_f: impl Fn(&T) -> U,
) -> LogicalSides<U> {
LogicalSides {
inline_start: inline_f(&self.inline_start),
inline_end: inline_f(&self.inline_end),
block_start: block_f(&self.block_start),
block_end: block_f(&self.block_end),
}
}
pub fn inline_sum(&self) -> T::Output
where
T: Add + Copy,
{
self.inline_start + self.inline_end
}
pub fn block_sum(&self) -> T::Output
where
T: Add + Copy,
{
self.block_start + self.block_end
}
pub fn sum(&self) -> LogicalVec2<T::Output>
where
T: Add + Copy,
{
LogicalVec2 {
inline: self.inline_sum(),
block: self.block_sum(),
}
}
pub fn to_physical(&self, mode: WritingMode) -> PhysicalSides<T>
where
T: Clone,
{
let top;
let right;
let bottom;
let left;
if mode.is_vertical() {
if mode.is_vertical_lr() {
left = self.block_start.clone();
right = self.block_end.clone();
} else {
right = self.block_start.clone();
left = self.block_end.clone();
}
if mode.is_inline_tb() {
top = self.inline_start.clone();
bottom = self.inline_end.clone();
} else {
bottom = self.inline_start.clone();
top = self.inline_end.clone();
}
} else {
top = self.block_start.clone();
bottom = self.block_end.clone();
if mode.is_bidi_ltr() {
left = self.inline_start.clone();
right = self.inline_end.clone();
} else {
right = self.inline_start.clone();
left = self.inline_end.clone();
}
}
PhysicalSides::new(top, right, bottom, left)
}
}
impl<T: Copy> LogicalSides<T> {
pub fn start_offset(&self) -> LogicalVec2<T> {
LogicalVec2 {
inline: self.inline_start,
block: self.block_start,
}
}
}
impl LogicalSides<&'_ LengthPercentage> {
pub fn percentages_relative_to(&self, basis: Au) -> LogicalSides<Au> {
self.map(|value| value.to_used_value(basis))
}
}
impl LogicalSides<LengthPercentageOrAuto<'_>> {
pub fn percentages_relative_to(&self, basis: Au) -> LogicalSides<AuOrAuto> {
self.map(|value| value.map(|value| value.to_used_value(basis)))
}
}
impl<T: Clone> LogicalSides<AutoOr<T>> {
pub fn auto_is(&self, f: impl Fn() -> T) -> LogicalSides<T> {
self.map(|s| s.auto_is(&f))
}
}
impl<T: Add<Output = T> + Copy> Add<LogicalSides<T>> for LogicalSides<T> {
type Output = LogicalSides<T>;
fn add(self, other: Self) -> Self::Output {
LogicalSides {
inline_start: self.inline_start + other.inline_start,
inline_end: self.inline_end + other.inline_end,
block_start: self.block_start + other.block_start,
block_end: self.block_end + other.block_end,
}
}
}
impl<T: Sub<Output = T> + Copy> Sub<LogicalSides<T>> for LogicalSides<T> {
type Output = LogicalSides<T>;
fn sub(self, other: Self) -> Self::Output {
LogicalSides {
inline_start: self.inline_start - other.inline_start,
inline_end: self.inline_end - other.inline_end,
block_start: self.block_start - other.block_start,
block_end: self.block_end - other.block_end,
}
}
}
impl<T: Neg<Output = T> + Copy> Neg for LogicalSides<T> {
type Output = LogicalSides<T>;
fn neg(self) -> Self::Output {
Self {
inline_start: -self.inline_start,
inline_end: -self.inline_end,
block_start: -self.block_start,
block_end: -self.block_end,
}
}
}
impl<T: Zero> LogicalSides<T> {
pub(crate) fn zero() -> LogicalSides<T> {
Self {
inline_start: T::zero(),
inline_end: T::zero(),
block_start: T::zero(),
block_end: T::zero(),
}
}
}
impl From<LogicalSides<CSSPixelLength>> for LogicalSides<Au> {
fn from(value: LogicalSides<CSSPixelLength>) -> Self {
Self {
inline_start: value.inline_start.into(),
inline_end: value.inline_end.into(),
block_start: value.block_start.into(),
block_end: value.block_end.into(),
}
}
}
impl From<LogicalSides<Au>> for LogicalSides<CSSPixelLength> {
fn from(value: LogicalSides<Au>) -> Self {
Self {
inline_start: value.inline_start.into(),
inline_end: value.inline_end.into(),
block_start: value.block_start.into(),
block_end: value.block_end.into(),
}
}
}
impl<T> LogicalRect<T> {
pub fn max_inline_position(&self) -> T
where
T: Add<Output = T> + Copy,
{
self.start_corner.inline + self.size.inline
}
pub fn max_block_position(&self) -> T
where
T: Add<Output = T> + Copy,
{
self.start_corner.block + self.size.block
}
pub fn inflate(&self, sides: &LogicalSides<T>) -> Self
where
T: Add<Output = T> + Copy,
T: Sub<Output = T> + Copy,
{
Self {
start_corner: LogicalVec2 {
inline: self.start_corner.inline - sides.inline_start,
block: self.start_corner.block - sides.block_start,
},
size: LogicalVec2 {
inline: self.size.inline + sides.inline_sum(),
block: self.size.block + sides.block_sum(),
},
}
}
pub fn deflate(&self, sides: &LogicalSides<T>) -> Self
where
T: Add<Output = T> + Copy,
T: Sub<Output = T> + Copy,
{
LogicalRect {
start_corner: LogicalVec2 {
inline: self.start_corner.inline + sides.inline_start,
block: self.start_corner.block + sides.block_start,
},
size: LogicalVec2 {
inline: self.size.inline - sides.inline_sum(),
block: self.size.block - sides.block_sum(),
},
}
}
}
impl LogicalRect<Au> {
pub(crate) fn as_physical(
&self,
containing_block: Option<&ContainingBlock<'_>>,
) -> PhysicalRect<Au> {
let mode = containing_block.map_or_else(WritingMode::horizontal_tb, |containing_block| {
containing_block.style.writing_mode
});
let (x, y, width, height) = if mode.is_vertical() {
(
self.start_corner.block,
self.start_corner.inline,
self.size.block,
self.size.inline,
)
} else {
let y = self.start_corner.block;
let x = match containing_block {
Some(containing_block) if !mode.is_bidi_ltr() => {
containing_block.size.inline - self.max_inline_position()
},
_ => self.start_corner.inline,
};
(x, y, self.size.inline, self.size.block)
};
PhysicalRect::new(PhysicalPoint::new(x, y), PhysicalSize::new(width, height))
}
}
impl From<LogicalVec2<CSSPixelLength>> for LogicalVec2<Au> {
fn from(value: LogicalVec2<CSSPixelLength>) -> Self {
LogicalVec2 {
inline: value.inline.into(),
block: value.block.into(),
}
}
}
impl From<LogicalVec2<Au>> for LogicalVec2<CSSPixelLength> {
fn from(value: LogicalVec2<Au>) -> Self {
LogicalVec2 {
inline: value.inline.into(),
block: value.block.into(),
}
}
}
impl From<LogicalRect<Au>> for LogicalRect<CSSPixelLength> {
fn from(value: LogicalRect<Au>) -> Self {
LogicalRect {
start_corner: value.start_corner.into(),
size: value.size.into(),
}
}
}
impl From<LogicalRect<CSSPixelLength>> for LogicalRect<Au> {
fn from(value: LogicalRect<CSSPixelLength>) -> Self {
LogicalRect {
start_corner: value.start_corner.into(),
size: value.size.into(),
}
}
}
pub(crate) trait ToLogical<Unit, LogicalType> {
fn to_logical(&self, writing_mode: WritingMode) -> LogicalType;
}
impl<Unit: Copy> ToLogical<Unit, LogicalVec2<Unit>> for PhysicalSize<Unit> {
fn to_logical(&self, writing_mode: WritingMode) -> LogicalVec2<Unit> {
LogicalVec2::from_physical_size(self, writing_mode)
}
}
impl<Unit: Copy> ToLogical<Unit, LogicalSides<Unit>> for PhysicalSides<Unit> {
fn to_logical(&self, writing_mode: WritingMode) -> LogicalSides<Unit> {
LogicalSides::from_physical(self, writing_mode)
}
}
pub(crate) trait ToLogicalWithContainingBlock<LogicalType> {
fn to_logical(&self, containing_block: &ContainingBlock) -> LogicalType;
}
impl ToLogicalWithContainingBlock<LogicalVec2<Au>> for PhysicalPoint<Au> {
fn to_logical(&self, containing_block: &ContainingBlock) -> LogicalVec2<Au> {
let writing_mode = containing_block.style.writing_mode;
if writing_mode.is_vertical() {
LogicalVec2 {
inline: self.y,
block: self.x,
}
} else {
LogicalVec2 {
inline: if writing_mode.is_bidi_ltr() {
self.x
} else {
containing_block.size.inline - self.x
},
block: self.y,
}
}
}
}
impl ToLogicalWithContainingBlock<LogicalRect<Au>> for PhysicalRect<Au> {
fn to_logical(&self, containing_block: &ContainingBlock) -> LogicalRect<Au> {
let inline_start;
let block_start;
let inline;
let block;
let writing_mode = containing_block.style.writing_mode;
if writing_mode.is_vertical() {
inline = self.size.height;
block = self.size.width;
block_start = self.origin.x;
inline_start = self.origin.y;
} else {
inline = self.size.width;
block = self.size.height;
block_start = self.origin.y;
if writing_mode.is_bidi_ltr() {
inline_start = self.origin.x;
} else {
inline_start = containing_block.size.inline - (self.origin.x + self.size.width);
}
}
LogicalRect {
start_corner: LogicalVec2 {
inline: inline_start,
block: block_start,
},
size: LogicalVec2 { inline, block },
}
}
}
#[derive(Clone, Debug, PartialEq)]
pub(crate) enum Size<T> {
Initial,
MinContent,
MaxContent,
FitContent,
Stretch,
Numeric(T),
}
impl<T: Copy> Copy for Size<T> {}
impl<T> Default for Size<T> {
#[inline]
fn default() -> Self {
Self::Initial
}
}
impl<T> Size<T> {
#[inline]
pub(crate) fn is_numeric(&self) -> bool {
matches!(self, Self::Numeric(_))
}
#[inline]
pub(crate) fn is_initial(&self) -> bool {
matches!(self, Self::Initial)
}
}
impl<T: Clone> Size<T> {
#[inline]
pub(crate) fn to_numeric(&self) -> Option<T> {
match self {
Self::Numeric(numeric) => Some(numeric).cloned(),
_ => None,
}
}
#[inline]
pub(crate) fn to_auto_or(&self) -> AutoOr<T> {
self.to_numeric()
.map_or(AutoOr::Auto, AutoOr::LengthPercentage)
}
#[inline]
pub fn map<U>(&self, f: impl FnOnce(T) -> U) -> Size<U> {
match self {
Size::Initial => Size::Initial,
Size::MinContent => Size::MinContent,
Size::MaxContent => Size::MaxContent,
Size::FitContent => Size::FitContent,
Size::Stretch => Size::Stretch,
Size::Numeric(numeric) => Size::Numeric(f(numeric.clone())),
}
}
#[inline]
pub fn maybe_map<U>(&self, f: impl FnOnce(T) -> Option<U>) -> Option<Size<U>> {
Some(match self {
Size::Numeric(numeric) => Size::Numeric(f(numeric.clone())?),
_ => self.map(|_| unreachable!("This shouldn't be called for keywords")),
})
}
}
impl From<StyleSize> for Size<LengthPercentage> {
fn from(size: StyleSize) -> Self {
match size {
StyleSize::LengthPercentage(length) => Size::Numeric(length.0),
StyleSize::Auto => Size::Initial,
StyleSize::MinContent => Size::MinContent,
StyleSize::MaxContent => Size::MaxContent,
StyleSize::FitContent => Size::FitContent,
StyleSize::Stretch => Size::Stretch,
StyleSize::AnchorSizeFunction(_) => unreachable!("anchor-size() should be disabled"),
}
}
}
impl From<StyleMaxSize> for Size<LengthPercentage> {
fn from(max_size: StyleMaxSize) -> Self {
match max_size {
StyleMaxSize::LengthPercentage(length) => Size::Numeric(length.0),
StyleMaxSize::None => Size::Initial,
StyleMaxSize::MinContent => Size::MinContent,
StyleMaxSize::MaxContent => Size::MaxContent,
StyleMaxSize::FitContent => Size::FitContent,
StyleMaxSize::Stretch => Size::Stretch,
StyleMaxSize::AnchorSizeFunction(_) => unreachable!("anchor-size() should be disabled"),
}
}
}
impl LogicalVec2<Size<LengthPercentage>> {
pub(crate) fn percentages_relative_to(
&self,
containing_block: &ContainingBlock,
) -> LogicalVec2<Size<Au>> {
self.map_inline_and_block_axes(
|inline_size| inline_size.map(|lp| lp.to_used_value(containing_block.size.inline)),
|block_size| {
block_size
.maybe_map(|lp| lp.maybe_to_used_value(containing_block.size.block.non_auto()))
.unwrap_or_default()
},
)
}
pub(crate) fn maybe_percentages_relative_to_basis(
&self,
basis: &LogicalVec2<Option<Au>>,
) -> LogicalVec2<Size<Au>> {
LogicalVec2 {
inline: self
.inline
.maybe_map(|v| v.maybe_to_used_value(basis.inline))
.unwrap_or_default(),
block: self
.block
.maybe_map(|v| v.maybe_to_used_value(basis.block))
.unwrap_or_default(),
}
}
pub(crate) fn percentages_relative_to_basis(
&self,
basis: &LogicalVec2<Au>,
) -> LogicalVec2<Size<Au>> {
LogicalVec2 {
inline: self.inline.map(|value| value.to_used_value(basis.inline)),
block: self.block.map(|value| value.to_used_value(basis.block)),
}
}
}
impl Size<Au> {
#[inline]
pub(crate) fn resolve<F: FnOnce() -> ContentSizes>(
&self,
initial_behavior: Self,
stretch_size: Au,
content_size: &LazyCell<ContentSizes, F>,
) -> Au {
if self.is_initial() {
assert!(!initial_behavior.is_initial());
initial_behavior.resolve_non_initial(stretch_size, content_size)
} else {
self.resolve_non_initial(stretch_size, content_size)
}
.unwrap()
}
#[inline]
pub(crate) fn resolve_non_initial<F: FnOnce() -> ContentSizes>(
&self,
stretch_size: Au,
content_size: &LazyCell<ContentSizes, F>,
) -> Option<Au> {
match self {
Self::Initial => None,
Self::MinContent => Some(content_size.min_content),
Self::MaxContent => Some(content_size.max_content),
Self::FitContent => Some(content_size.shrink_to_fit(stretch_size)),
Self::Stretch => Some(stretch_size),
Self::Numeric(numeric) => Some(*numeric),
}
}
#[inline]
pub(crate) fn maybe_resolve_extrinsic(&self, stretch_size: Option<Au>) -> Option<Au> {
match self {
Self::Initial | Self::MinContent | Self::MaxContent | Self::FitContent => None,
Self::Stretch => stretch_size,
Self::Numeric(numeric) => Some(*numeric),
}
}
}
#[derive(Clone, Copy, Debug, PartialEq, Serialize)]
pub(crate) enum SizeConstraint {
Definite(Au),
MinMax(Au, Option<Au>),
}
impl Default for SizeConstraint {
#[inline]
fn default() -> Self {
Self::MinMax(Au::default(), None)
}
}
impl SizeConstraint {
#[inline]
pub(crate) fn new(preferred_size: Option<Au>, min_size: Au, max_size: Option<Au>) -> Self {
preferred_size.map_or_else(
|| Self::MinMax(min_size, max_size),
|size| Self::Definite(size.clamp_between_extremums(min_size, max_size)),
)
}
#[inline]
pub(crate) fn to_definite(self) -> Option<Au> {
match self {
Self::Definite(size) => Some(size),
_ => None,
}
}
#[inline]
pub(crate) fn to_auto_or(self) -> AutoOr<Au> {
self.to_definite()
.map_or(AutoOr::Auto, AutoOr::LengthPercentage)
}
}
#[derive(Clone, Default)]
pub(crate) struct Sizes {
pub preferred: Size<Au>,
pub min: Size<Au>,
pub max: Size<Au>,
}
impl Sizes {
#[inline]
pub(crate) fn new(preferred: Size<Au>, min: Size<Au>, max: Size<Au>) -> Self {
Self {
preferred,
min,
max,
}
}
#[inline]
pub(crate) fn depends_on_available_space(&self) -> bool {
matches!(
self.preferred,
Size::Initial | Size::Stretch | Size::FitContent
) || matches!(self.min, Size::Stretch | Size::FitContent) ||
matches!(self.max, Size::Stretch | Size::FitContent)
}
#[inline]
pub(crate) fn resolve(
&self,
automatic_size: Size<Au>,
automatic_minimum_size: Au,
stretch_size: Au,
get_content_size: impl FnOnce() -> ContentSizes,
) -> Au {
let (preferred, min, max) = self.resolve_each(
automatic_size,
automatic_minimum_size,
stretch_size,
get_content_size,
);
preferred.clamp_between_extremums(min, max)
}
#[inline]
pub(crate) fn resolve_each(
&self,
automatic_size: Size<Au>,
automatic_minimum_size: Au,
stretch_size: Au,
get_content_size: impl FnOnce() -> ContentSizes,
) -> (Au, Au, Option<Au>) {
let content_size = LazyCell::new(get_content_size);
(
self.preferred
.resolve(automatic_size, stretch_size, &content_size),
self.min
.resolve_non_initial(stretch_size, &content_size)
.unwrap_or(automatic_minimum_size),
self.max.resolve_non_initial(stretch_size, &content_size),
)
}
#[inline]
pub(crate) fn resolve_extrinsic(
&self,
automatic_size: Size<Au>,
automatic_minimum_size: Au,
stretch_size: Option<Au>,
) -> SizeConstraint {
let (preferred, min, max) =
self.resolve_each_extrinsic(automatic_size, automatic_minimum_size, stretch_size);
SizeConstraint::new(preferred, min, max)
}
#[inline]
pub(crate) fn resolve_each_extrinsic(
&self,
automatic_size: Size<Au>,
automatic_minimum_size: Au,
stretch_size: Option<Au>,
) -> (Option<Au>, Au, Option<Au>) {
(
if self.preferred.is_initial() {
automatic_size.maybe_resolve_extrinsic(stretch_size)
} else {
self.preferred.maybe_resolve_extrinsic(stretch_size)
},
self.min
.maybe_resolve_extrinsic(stretch_size)
.unwrap_or(automatic_minimum_size),
self.max.maybe_resolve_extrinsic(stretch_size),
)
}
}