1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
// This file is part of ICU4X. For terms of use, please see the file
// called LICENSE at the top level of the ICU4X source tree
// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).
//! Traits for pluggable LiteMap backends.
//!
//! By default, LiteMap is backed by a `Vec`. However, in some environments, it may be desirable
//! to use a different data store while still using LiteMap to manage proper ordering of items.
//!
//! The general guidelines for a performant data store are:
//!
//! 1. Must support efficient random access for binary search
//! 2. Should support efficient append operations for deserialization
//!
//! To plug a custom data store into LiteMap, implement:
//!
//! - [`Store`] for most of the methods
//! - [`StoreIterable`] for methods that return iterators
//! - [`StoreFromIterator`] to enable `FromIterator` for LiteMap
//!
//! To test your implementation, enable the `"testing"` Cargo feature and use [`check_store()`].
//!
//! [`check_store()`]: crate::testing::check_store
mod slice_impl;
#[cfg(feature = "alloc")]
mod vec_impl;
use core::cmp::Ordering;
use core::iter::DoubleEndedIterator;
use core::iter::FromIterator;
use core::iter::Iterator;
use core::ops::Range;
/// Trait to enable const construction of empty store.
pub trait StoreConstEmpty<K: ?Sized, V: ?Sized> {
/// An empty store
const EMPTY: Self;
}
/// Trait to enable pluggable backends for LiteMap.
///
/// Some methods have default implementations provided for convenience; however, it is generally
/// better to implement all methods that your data store supports.
pub trait Store<K: ?Sized, V: ?Sized>: Sized {
/// Returns the number of elements in the store.
fn lm_len(&self) -> usize;
/// Returns whether the store is empty (contains 0 elements).
fn lm_is_empty(&self) -> bool {
self.lm_len() == 0
}
/// Gets a key/value pair at the specified index.
fn lm_get(&self, index: usize) -> Option<(&K, &V)>;
/// Gets the last element in the store, or `None` if the store is empty.
fn lm_last(&self) -> Option<(&K, &V)> {
let len = self.lm_len();
if len == 0 {
None
} else {
self.lm_get(len - 1)
}
}
/// Searches the store for a particular element with a comparator function.
///
/// See the binary search implementation on `slice` for more information.
fn lm_binary_search_by<F>(&self, cmp: F) -> Result<usize, usize>
where
F: FnMut(&K) -> Ordering;
}
pub trait StoreFromIterable<K, V>: Store<K, V> {
/// Create a sorted store from `iter`.
fn lm_sort_from_iter<I: IntoIterator<Item = (K, V)>>(iter: I) -> Self;
}
pub trait StoreSlice<K: ?Sized, V: ?Sized>: Store<K, V> {
type Slice: ?Sized;
fn lm_get_range(&self, range: Range<usize>) -> Option<&Self::Slice>;
}
pub trait StoreMut<K, V>: Store<K, V> {
/// Creates a new store with the specified capacity hint.
///
/// Implementations may ignore the argument if they do not support pre-allocating capacity.
fn lm_with_capacity(capacity: usize) -> Self;
/// Reserves additional capacity in the store.
///
/// Implementations may ignore the argument if they do not support pre-allocating capacity.
fn lm_reserve(&mut self, additional: usize);
/// Gets a key/value pair at the specified index, with a mutable value.
fn lm_get_mut(&mut self, index: usize) -> Option<(&K, &mut V)>;
/// Pushes one additional item onto the store.
fn lm_push(&mut self, key: K, value: V);
/// Inserts an item at a specific index in the store.
///
/// # Panics
///
/// Panics if `index` is greater than the length.
fn lm_insert(&mut self, index: usize, key: K, value: V);
/// Removes an item at a specific index in the store.
///
/// # Panics
///
/// Panics if `index` is greater than the length.
fn lm_remove(&mut self, index: usize) -> (K, V);
/// Removes all items from the store.
fn lm_clear(&mut self);
/// Retains items satisfying a predicate in this store.
fn lm_retain<F>(&mut self, mut predicate: F)
where
F: FnMut(&K, &V) -> bool,
{
let mut i = 0;
while i < self.lm_len() {
#[allow(clippy::unwrap_used)] // i is in range
let (k, v) = self.lm_get(i).unwrap();
if predicate(k, v) {
i += 1;
} else {
self.lm_remove(i);
}
}
}
}
/// Iterator methods for the LiteMap store.
pub trait StoreIterable<'a, K: 'a + ?Sized, V: 'a + ?Sized>: Store<K, V> {
type KeyValueIter: Iterator<Item = (&'a K, &'a V)> + DoubleEndedIterator + 'a;
/// Returns an iterator over key/value pairs.
fn lm_iter(&'a self) -> Self::KeyValueIter;
}
pub trait StoreIterableMut<'a, K: 'a, V: 'a>: StoreMut<K, V> + StoreIterable<'a, K, V> {
type KeyValueIterMut: Iterator<Item = (&'a K, &'a mut V)> + DoubleEndedIterator + 'a;
/// Returns an iterator over key/value pairs, with a mutable value.
fn lm_iter_mut(&'a mut self) -> Self::KeyValueIterMut;
}
pub trait StoreIntoIterator<K, V>: StoreMut<K, V> {
type KeyValueIntoIter: Iterator<Item = (K, V)>;
/// Returns an iterator that moves every item from this store.
fn lm_into_iter(self) -> Self::KeyValueIntoIter;
/// Adds items from another store to the end of this store.
fn lm_extend_end(&mut self, other: Self)
where
Self: Sized,
{
for item in other.lm_into_iter() {
self.lm_push(item.0, item.1);
}
}
/// Adds items from another store to the beginning of this store.
fn lm_extend_start(&mut self, other: Self)
where
Self: Sized,
{
for (i, item) in other.lm_into_iter().enumerate() {
self.lm_insert(i, item.0, item.1);
}
}
}
/// A store that can be built from a tuple iterator.
pub trait StoreFromIterator<K, V>: FromIterator<(K, V)> {}