hyper_util/rt/tokio.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
//! [`tokio`] runtime components integration for [`hyper`].
//!
//! [`hyper::rt`] exposes a set of traits to allow hyper to be agnostic to
//! its underlying asynchronous runtime. This submodule provides glue for
//! [`tokio`] users to bridge those types to [`hyper`]'s interfaces.
//!
//! # IO
//!
//! [`hyper`] abstracts over asynchronous readers and writers using [`Read`]
//! and [`Write`], while [`tokio`] abstracts over this using [`AsyncRead`]
//! and [`AsyncWrite`]. This submodule provides a collection of IO adaptors
//! to bridge these two IO ecosystems together: [`TokioIo<I>`],
//! [`WithHyperIo<I>`], and [`WithTokioIo<I>`].
//!
//! To compare and constrast these IO adaptors and to help explain which
//! is the proper choice for your needs, here is a table showing which IO
//! traits these implement, given two types `T` and `H` which implement
//! Tokio's and Hyper's corresponding IO traits:
//!
//! | | [`AsyncRead`] | [`AsyncWrite`] | [`Read`] | [`Write`] |
//! |--------------------|------------------|-------------------|--------------|--------------|
//! | `T` | ✅ **true** | ✅ **true** | ❌ **false** | ❌ **false** |
//! | `H` | ❌ **false** | ❌ **false** | ✅ **true** | ✅ **true** |
//! | [`TokioIo<T>`] | ❌ **false** | ❌ **false** | ✅ **true** | ✅ **true** |
//! | [`TokioIo<H>`] | ✅ **true** | ✅ **true** | ❌ **false** | ❌ **false** |
//! | [`WithHyperIo<T>`] | ✅ **true** | ✅ **true** | ✅ **true** | ✅ **true** |
//! | [`WithHyperIo<H>`] | ❌ **false** | ❌ **false** | ❌ **false** | ❌ **false** |
//! | [`WithTokioIo<T>`] | ❌ **false** | ❌ **false** | ❌ **false** | ❌ **false** |
//! | [`WithTokioIo<H>`] | ✅ **true** | ✅ **true** | ✅ **true** | ✅ **true** |
//!
//! For most situations, [`TokioIo<I>`] is the proper choice. This should be
//! constructed, wrapping some underlying [`hyper`] or [`tokio`] IO, at the
//! call-site of a function like [`hyper::client::conn::http1::handshake`].
//!
//! [`TokioIo<I>`] switches across these ecosystems, but notably does not
//! preserve the existing IO trait implementations of its underlying IO. If
//! one wishes to _extend_ IO with additional implementations,
//! [`WithHyperIo<I>`] and [`WithTokioIo<I>`] are the correct choice.
//!
//! For example, a Tokio reader/writer can be wrapped in [`WithHyperIo<I>`].
//! That will implement _both_ sets of IO traits. Conversely,
//! [`WithTokioIo<I>`] will implement both sets of IO traits given a
//! reader/writer that implements Hyper's [`Read`] and [`Write`].
//!
//! See [`tokio::io`] and ["_Asynchronous IO_"][tokio-async-docs] for more
//! information.
//!
//! [`AsyncRead`]: tokio::io::AsyncRead
//! [`AsyncWrite`]: tokio::io::AsyncWrite
//! [`Read`]: hyper::rt::Read
//! [`Write`]: hyper::rt::Write
//! [tokio-async-docs]: https://docs.rs/tokio/latest/tokio/#asynchronous-io
use std::{
future::Future,
pin::Pin,
task::{Context, Poll},
time::{Duration, Instant},
};
use hyper::rt::{Executor, Sleep, Timer};
use pin_project_lite::pin_project;
#[cfg(feature = "tracing")]
use tracing::instrument::Instrument;
pub use self::{with_hyper_io::WithHyperIo, with_tokio_io::WithTokioIo};
mod with_hyper_io;
mod with_tokio_io;
/// Future executor that utilises `tokio` threads.
#[non_exhaustive]
#[derive(Default, Debug, Clone)]
pub struct TokioExecutor {}
pin_project! {
/// A wrapper that implements Tokio's IO traits for an inner type that
/// implements hyper's IO traits, or vice versa (implements hyper's IO
/// traits for a type that implements Tokio's IO traits).
#[derive(Debug)]
pub struct TokioIo<T> {
#[pin]
inner: T,
}
}
/// A Timer that uses the tokio runtime.
#[non_exhaustive]
#[derive(Default, Clone, Debug)]
pub struct TokioTimer;
// Use TokioSleep to get tokio::time::Sleep to implement Unpin.
// see https://docs.rs/tokio/latest/tokio/time/struct.Sleep.html
pin_project! {
#[derive(Debug)]
struct TokioSleep {
#[pin]
inner: tokio::time::Sleep,
}
}
// ===== impl TokioExecutor =====
impl<Fut> Executor<Fut> for TokioExecutor
where
Fut: Future + Send + 'static,
Fut::Output: Send + 'static,
{
fn execute(&self, fut: Fut) {
#[cfg(feature = "tracing")]
tokio::spawn(fut.in_current_span());
#[cfg(not(feature = "tracing"))]
tokio::spawn(fut);
}
}
impl TokioExecutor {
/// Create new executor that relies on [`tokio::spawn`] to execute futures.
pub fn new() -> Self {
Self {}
}
}
// ==== impl TokioIo =====
impl<T> TokioIo<T> {
/// Wrap a type implementing Tokio's or hyper's IO traits.
pub fn new(inner: T) -> Self {
Self { inner }
}
/// Borrow the inner type.
pub fn inner(&self) -> &T {
&self.inner
}
/// Mut borrow the inner type.
pub fn inner_mut(&mut self) -> &mut T {
&mut self.inner
}
/// Consume this wrapper and get the inner type.
pub fn into_inner(self) -> T {
self.inner
}
}
impl<T> hyper::rt::Read for TokioIo<T>
where
T: tokio::io::AsyncRead,
{
fn poll_read(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
mut buf: hyper::rt::ReadBufCursor<'_>,
) -> Poll<Result<(), std::io::Error>> {
let n = unsafe {
let mut tbuf = tokio::io::ReadBuf::uninit(buf.as_mut());
match tokio::io::AsyncRead::poll_read(self.project().inner, cx, &mut tbuf) {
Poll::Ready(Ok(())) => tbuf.filled().len(),
other => return other,
}
};
unsafe {
buf.advance(n);
}
Poll::Ready(Ok(()))
}
}
impl<T> hyper::rt::Write for TokioIo<T>
where
T: tokio::io::AsyncWrite,
{
fn poll_write(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &[u8],
) -> Poll<Result<usize, std::io::Error>> {
tokio::io::AsyncWrite::poll_write(self.project().inner, cx, buf)
}
fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), std::io::Error>> {
tokio::io::AsyncWrite::poll_flush(self.project().inner, cx)
}
fn poll_shutdown(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<Result<(), std::io::Error>> {
tokio::io::AsyncWrite::poll_shutdown(self.project().inner, cx)
}
fn is_write_vectored(&self) -> bool {
tokio::io::AsyncWrite::is_write_vectored(&self.inner)
}
fn poll_write_vectored(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
bufs: &[std::io::IoSlice<'_>],
) -> Poll<Result<usize, std::io::Error>> {
tokio::io::AsyncWrite::poll_write_vectored(self.project().inner, cx, bufs)
}
}
impl<T> tokio::io::AsyncRead for TokioIo<T>
where
T: hyper::rt::Read,
{
fn poll_read(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
tbuf: &mut tokio::io::ReadBuf<'_>,
) -> Poll<Result<(), std::io::Error>> {
//let init = tbuf.initialized().len();
let filled = tbuf.filled().len();
let sub_filled = unsafe {
let mut buf = hyper::rt::ReadBuf::uninit(tbuf.unfilled_mut());
match hyper::rt::Read::poll_read(self.project().inner, cx, buf.unfilled()) {
Poll::Ready(Ok(())) => buf.filled().len(),
other => return other,
}
};
let n_filled = filled + sub_filled;
// At least sub_filled bytes had to have been initialized.
let n_init = sub_filled;
unsafe {
tbuf.assume_init(n_init);
tbuf.set_filled(n_filled);
}
Poll::Ready(Ok(()))
}
}
impl<T> tokio::io::AsyncWrite for TokioIo<T>
where
T: hyper::rt::Write,
{
fn poll_write(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &[u8],
) -> Poll<Result<usize, std::io::Error>> {
hyper::rt::Write::poll_write(self.project().inner, cx, buf)
}
fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), std::io::Error>> {
hyper::rt::Write::poll_flush(self.project().inner, cx)
}
fn poll_shutdown(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<Result<(), std::io::Error>> {
hyper::rt::Write::poll_shutdown(self.project().inner, cx)
}
fn is_write_vectored(&self) -> bool {
hyper::rt::Write::is_write_vectored(&self.inner)
}
fn poll_write_vectored(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
bufs: &[std::io::IoSlice<'_>],
) -> Poll<Result<usize, std::io::Error>> {
hyper::rt::Write::poll_write_vectored(self.project().inner, cx, bufs)
}
}
// ==== impl TokioTimer =====
impl Timer for TokioTimer {
fn sleep(&self, duration: Duration) -> Pin<Box<dyn Sleep>> {
Box::pin(TokioSleep {
inner: tokio::time::sleep(duration),
})
}
fn sleep_until(&self, deadline: Instant) -> Pin<Box<dyn Sleep>> {
Box::pin(TokioSleep {
inner: tokio::time::sleep_until(deadline.into()),
})
}
fn reset(&self, sleep: &mut Pin<Box<dyn Sleep>>, new_deadline: Instant) {
if let Some(sleep) = sleep.as_mut().downcast_mut_pin::<TokioSleep>() {
sleep.reset(new_deadline)
}
}
}
impl TokioTimer {
/// Create a new TokioTimer
pub fn new() -> Self {
Self {}
}
}
impl Future for TokioSleep {
type Output = ();
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
self.project().inner.poll(cx)
}
}
impl Sleep for TokioSleep {}
impl TokioSleep {
fn reset(self: Pin<&mut Self>, deadline: Instant) {
self.project().inner.as_mut().reset(deadline.into());
}
}
#[cfg(test)]
mod tests {
use crate::rt::TokioExecutor;
use hyper::rt::Executor;
use tokio::sync::oneshot;
#[cfg(not(miri))]
#[tokio::test]
async fn simple_execute() -> Result<(), Box<dyn std::error::Error>> {
let (tx, rx) = oneshot::channel();
let executor = TokioExecutor::new();
executor.execute(async move {
tx.send(()).unwrap();
});
rx.await.map_err(Into::into)
}
}