use api::{precise_time_ns, ImageBufferKind, units::DeviceSize};
use crate::batch::{BatchKey, BatchKind, BrushBatchKind, BatchFeatures};
use crate::composite::{CompositeFeatures, CompositeSurfaceFormat};
use crate::device::{Device, Program, ShaderError};
use crate::pattern::PatternKind;
use crate::telemetry::Telemetry;
use euclid::default::Transform3D;
use glyph_rasterizer::GlyphFormat;
use crate::renderer::{
desc,
BlendMode, DebugFlags, RendererError, WebRenderOptions,
TextureSampler, VertexArrayKind, ShaderPrecacheFlags,
};
use crate::profiler::{self, TransactionProfile, ns_to_ms};
use gleam::gl::GlType;
use std::cell::RefCell;
use std::collections::VecDeque;
use std::rc::Rc;
use webrender_build::shader::{ShaderFeatures, ShaderFeatureFlags, get_shader_features};
#[derive(Clone, Copy, Debug, PartialEq)]
enum TextureExternalVersion {
ESSL3,
ESSL1,
}
fn get_feature_string(kind: ImageBufferKind, texture_external_version: TextureExternalVersion) -> &'static str {
match (kind, texture_external_version) {
(ImageBufferKind::Texture2D, _) => "TEXTURE_2D",
(ImageBufferKind::TextureRect, _) => "TEXTURE_RECT",
(ImageBufferKind::TextureExternal, TextureExternalVersion::ESSL3) => "TEXTURE_EXTERNAL",
(ImageBufferKind::TextureExternal, TextureExternalVersion::ESSL1) => "TEXTURE_EXTERNAL_ESSL1",
(ImageBufferKind::TextureExternalBT709, _) => "TEXTURE_EXTERNAL_BT709",
}
}
fn has_platform_support(kind: ImageBufferKind, device: &Device) -> bool {
match (kind, device.gl().get_type()) {
(ImageBufferKind::Texture2D, _) => true,
(ImageBufferKind::TextureRect, GlType::Gles) => false,
(ImageBufferKind::TextureRect, GlType::Gl) => true,
(ImageBufferKind::TextureExternal, GlType::Gles) => true,
(ImageBufferKind::TextureExternal, GlType::Gl) => false,
(ImageBufferKind::TextureExternalBT709, GlType::Gles) => device.supports_extension("GL_EXT_YUV_target"),
(ImageBufferKind::TextureExternalBT709, GlType::Gl) => false,
}
}
pub const IMAGE_BUFFER_KINDS: [ImageBufferKind; 4] = [
ImageBufferKind::Texture2D,
ImageBufferKind::TextureRect,
ImageBufferKind::TextureExternal,
ImageBufferKind::TextureExternalBT709,
];
const ADVANCED_BLEND_FEATURE: &str = "ADVANCED_BLEND";
const ALPHA_FEATURE: &str = "ALPHA_PASS";
const DEBUG_OVERDRAW_FEATURE: &str = "DEBUG_OVERDRAW";
const DITHERING_FEATURE: &str = "DITHERING";
const DUAL_SOURCE_FEATURE: &str = "DUAL_SOURCE_BLENDING";
const FAST_PATH_FEATURE: &str = "FAST_PATH";
pub(crate) enum ShaderKind {
Primitive,
Cache(VertexArrayKind),
ClipCache(VertexArrayKind),
Brush,
Text,
#[allow(dead_code)]
VectorStencil,
#[allow(dead_code)]
VectorCover,
#[allow(dead_code)]
Resolve,
Composite,
Clear,
Copy,
}
pub struct LazilyCompiledShader {
program: Option<Program>,
name: &'static str,
kind: ShaderKind,
cached_projection: Transform3D<f32>,
features: Vec<&'static str>,
}
impl LazilyCompiledShader {
pub(crate) fn new(
kind: ShaderKind,
name: &'static str,
unsorted_features: &[&'static str],
shader_list: &ShaderFeatures,
) -> Result<Self, ShaderError> {
let mut features = unsorted_features.to_vec();
features.sort();
let config = features.join(",");
assert!(
shader_list.get(name).map_or(false, |f| f.contains(&config)),
"shader \"{}\" with features \"{}\" not in available shader list",
name,
config,
);
let shader = LazilyCompiledShader {
program: None,
name,
kind,
cached_projection: Transform3D::identity(),
features,
};
Ok(shader)
}
pub fn precache(
&mut self,
device: &mut Device,
flags: ShaderPrecacheFlags,
) -> Result<(), ShaderError> {
let t0 = precise_time_ns();
let timer_id = Telemetry::start_shaderload_time();
self.get_internal(device, flags, None)?;
Telemetry::stop_and_accumulate_shaderload_time(timer_id);
let t1 = precise_time_ns();
debug!("[C: {:.1} ms ] Precache {} {:?}",
(t1 - t0) as f64 / 1000000.0,
self.name,
self.features
);
Ok(())
}
pub fn bind(
&mut self,
device: &mut Device,
projection: &Transform3D<f32>,
texture_size: Option<DeviceSize>,
renderer_errors: &mut Vec<RendererError>,
profile: &mut TransactionProfile,
) {
let update_projection = self.cached_projection != *projection;
let program = match self.get_internal(device, ShaderPrecacheFlags::FULL_COMPILE, Some(profile)) {
Ok(program) => program,
Err(e) => {
renderer_errors.push(RendererError::from(e));
return;
}
};
device.bind_program(program);
if let Some(texture_size) = texture_size {
device.set_shader_texture_size(program, texture_size);
}
if update_projection {
device.set_uniforms(program, projection);
self.cached_projection = *projection;
}
}
fn get_internal(
&mut self,
device: &mut Device,
precache_flags: ShaderPrecacheFlags,
mut profile: Option<&mut TransactionProfile>,
) -> Result<&mut Program, ShaderError> {
if self.program.is_none() {
let start_time = precise_time_ns();
let program = match self.kind {
ShaderKind::Primitive | ShaderKind::Brush | ShaderKind::Text | ShaderKind::Resolve | ShaderKind::Clear | ShaderKind::Copy => {
create_prim_shader(
self.name,
device,
&self.features,
)
}
ShaderKind::Cache(..) => {
create_prim_shader(
self.name,
device,
&self.features,
)
}
ShaderKind::VectorStencil => {
create_prim_shader(
self.name,
device,
&self.features,
)
}
ShaderKind::VectorCover => {
create_prim_shader(
self.name,
device,
&self.features,
)
}
ShaderKind::Composite => {
create_prim_shader(
self.name,
device,
&self.features,
)
}
ShaderKind::ClipCache(..) => {
create_clip_shader(
self.name,
device,
&self.features,
)
}
};
self.program = Some(program?);
if let Some(profile) = &mut profile {
let end_time = precise_time_ns();
profile.add(profiler::SHADER_BUILD_TIME, ns_to_ms(end_time - start_time));
}
}
let program = self.program.as_mut().unwrap();
if precache_flags.contains(ShaderPrecacheFlags::FULL_COMPILE) && !program.is_initialized() {
let start_time = precise_time_ns();
let vertex_format = match self.kind {
ShaderKind::Primitive |
ShaderKind::Brush |
ShaderKind::Text => VertexArrayKind::Primitive,
ShaderKind::Cache(format) => format,
ShaderKind::VectorStencil => VertexArrayKind::VectorStencil,
ShaderKind::VectorCover => VertexArrayKind::VectorCover,
ShaderKind::ClipCache(format) => format,
ShaderKind::Resolve => VertexArrayKind::Resolve,
ShaderKind::Composite => VertexArrayKind::Composite,
ShaderKind::Clear => VertexArrayKind::Clear,
ShaderKind::Copy => VertexArrayKind::Copy,
};
let vertex_descriptor = match vertex_format {
VertexArrayKind::Primitive => &desc::PRIM_INSTANCES,
VertexArrayKind::LineDecoration => &desc::LINE,
VertexArrayKind::FastLinearGradient => &desc::FAST_LINEAR_GRADIENT,
VertexArrayKind::LinearGradient => &desc::LINEAR_GRADIENT,
VertexArrayKind::RadialGradient => &desc::RADIAL_GRADIENT,
VertexArrayKind::ConicGradient => &desc::CONIC_GRADIENT,
VertexArrayKind::Blur => &desc::BLUR,
VertexArrayKind::ClipRect => &desc::CLIP_RECT,
VertexArrayKind::ClipBoxShadow => &desc::CLIP_BOX_SHADOW,
VertexArrayKind::VectorStencil => &desc::VECTOR_STENCIL,
VertexArrayKind::VectorCover => &desc::VECTOR_COVER,
VertexArrayKind::Border => &desc::BORDER,
VertexArrayKind::Scale => &desc::SCALE,
VertexArrayKind::Resolve => &desc::RESOLVE,
VertexArrayKind::SvgFilter => &desc::SVG_FILTER,
VertexArrayKind::SvgFilterNode => &desc::SVG_FILTER_NODE,
VertexArrayKind::Composite => &desc::COMPOSITE,
VertexArrayKind::Clear => &desc::CLEAR,
VertexArrayKind::Copy => &desc::COPY,
VertexArrayKind::Mask => &desc::MASK,
};
device.link_program(program, vertex_descriptor)?;
device.bind_program(program);
match self.kind {
ShaderKind::ClipCache(..) => {
device.bind_shader_samplers(
&program,
&[
("sColor0", TextureSampler::Color0),
("sTransformPalette", TextureSampler::TransformPalette),
("sRenderTasks", TextureSampler::RenderTasks),
("sGpuCache", TextureSampler::GpuCache),
("sPrimitiveHeadersF", TextureSampler::PrimitiveHeadersF),
("sPrimitiveHeadersI", TextureSampler::PrimitiveHeadersI),
("sGpuBufferF", TextureSampler::GpuBufferF),
("sGpuBufferI", TextureSampler::GpuBufferI),
],
);
}
_ => {
device.bind_shader_samplers(
&program,
&[
("sColor0", TextureSampler::Color0),
("sColor1", TextureSampler::Color1),
("sColor2", TextureSampler::Color2),
("sDither", TextureSampler::Dither),
("sTransformPalette", TextureSampler::TransformPalette),
("sRenderTasks", TextureSampler::RenderTasks),
("sGpuCache", TextureSampler::GpuCache),
("sPrimitiveHeadersF", TextureSampler::PrimitiveHeadersF),
("sPrimitiveHeadersI", TextureSampler::PrimitiveHeadersI),
("sClipMask", TextureSampler::ClipMask),
("sGpuBufferF", TextureSampler::GpuBufferF),
("sGpuBufferI", TextureSampler::GpuBufferI),
],
);
}
}
if let Some(profile) = &mut profile {
let end_time = precise_time_ns();
profile.add(profiler::SHADER_BUILD_TIME, ns_to_ms(end_time - start_time));
}
}
Ok(program)
}
fn deinit(self, device: &mut Device) {
if let Some(program) = self.program {
device.delete_program(program);
}
}
}
struct BrushShader {
opaque: ShaderHandle,
alpha: ShaderHandle,
advanced_blend: Option<ShaderHandle>,
dual_source: Option<ShaderHandle>,
debug_overdraw: ShaderHandle,
}
impl BrushShader {
fn new(
name: &'static str,
features: &[&'static str],
shader_list: &ShaderFeatures,
use_advanced_blend: bool,
use_dual_source: bool,
loader: &mut ShaderLoader,
) -> Result<Self, ShaderError> {
let opaque_features = features.to_vec();
let opaque = loader.create_shader(
ShaderKind::Brush,
name,
&opaque_features,
&shader_list,
)?;
let mut alpha_features = opaque_features.to_vec();
alpha_features.push(ALPHA_FEATURE);
let alpha = loader.create_shader(
ShaderKind::Brush,
name,
&alpha_features,
&shader_list,
)?;
let advanced_blend = if use_advanced_blend {
let mut advanced_blend_features = alpha_features.to_vec();
advanced_blend_features.push(ADVANCED_BLEND_FEATURE);
let shader = loader.create_shader(
ShaderKind::Brush,
name,
&advanced_blend_features,
&shader_list,
)?;
Some(shader)
} else {
None
};
let dual_source = if use_dual_source {
let mut dual_source_features = alpha_features.to_vec();
dual_source_features.push(DUAL_SOURCE_FEATURE);
let shader = loader.create_shader(
ShaderKind::Brush,
name,
&dual_source_features,
&shader_list,
)?;
Some(shader)
} else {
None
};
let mut debug_overdraw_features = features.to_vec();
debug_overdraw_features.push(DEBUG_OVERDRAW_FEATURE);
let debug_overdraw = loader.create_shader(
ShaderKind::Brush,
name,
&debug_overdraw_features,
&shader_list,
)?;
Ok(BrushShader {
opaque,
alpha,
advanced_blend,
dual_source,
debug_overdraw,
})
}
fn get_handle(
&mut self,
blend_mode: BlendMode,
features: BatchFeatures,
debug_flags: DebugFlags,
) -> ShaderHandle {
match blend_mode {
_ if debug_flags.contains(DebugFlags::SHOW_OVERDRAW) => self.debug_overdraw,
BlendMode::None => self.opaque,
BlendMode::Alpha |
BlendMode::PremultipliedAlpha |
BlendMode::PremultipliedDestOut |
BlendMode::Screen |
BlendMode::PlusLighter |
BlendMode::Exclusion => {
if features.contains(BatchFeatures::ALPHA_PASS) {
self.alpha
} else {
self.opaque
}
}
BlendMode::Advanced(_) => {
self.advanced_blend.expect("bug: no advanced blend shader loaded")
}
BlendMode::SubpixelDualSource |
BlendMode::MultiplyDualSource => {
self.dual_source.expect("bug: no dual source shader loaded")
}
}
}
}
pub struct TextShader {
simple: ShaderHandle,
glyph_transform: ShaderHandle,
debug_overdraw: ShaderHandle,
}
impl TextShader {
fn new(
name: &'static str,
features: &[&'static str],
shader_list: &ShaderFeatures,
loader: &mut ShaderLoader,
) -> Result<Self, ShaderError> {
let mut simple_features = features.to_vec();
simple_features.push("ALPHA_PASS");
simple_features.push("TEXTURE_2D");
let simple = loader.create_shader(
ShaderKind::Text,
name,
&simple_features,
&shader_list,
)?;
let mut glyph_transform_features = features.to_vec();
glyph_transform_features.push("GLYPH_TRANSFORM");
glyph_transform_features.push("ALPHA_PASS");
glyph_transform_features.push("TEXTURE_2D");
let glyph_transform = loader.create_shader(
ShaderKind::Text,
name,
&glyph_transform_features,
&shader_list,
)?;
let mut debug_overdraw_features = features.to_vec();
debug_overdraw_features.push("DEBUG_OVERDRAW");
debug_overdraw_features.push("TEXTURE_2D");
let debug_overdraw = loader.create_shader(
ShaderKind::Text,
name,
&debug_overdraw_features,
&shader_list,
)?;
Ok(TextShader { simple, glyph_transform, debug_overdraw })
}
pub fn get_handle(
&mut self,
glyph_format: GlyphFormat,
debug_flags: DebugFlags,
) -> ShaderHandle {
match glyph_format {
_ if debug_flags.contains(DebugFlags::SHOW_OVERDRAW) => self.debug_overdraw,
GlyphFormat::Alpha |
GlyphFormat::Subpixel |
GlyphFormat::Bitmap |
GlyphFormat::ColorBitmap => self.simple,
GlyphFormat::TransformedAlpha |
GlyphFormat::TransformedSubpixel => self.glyph_transform,
}
}
}
fn create_prim_shader(
name: &'static str,
device: &mut Device,
features: &[&'static str],
) -> Result<Program, ShaderError> {
debug!("PrimShader {}", name);
device.create_program(name, features)
}
fn create_clip_shader(
name: &'static str,
device: &mut Device,
features: &[&'static str],
) -> Result<Program, ShaderError> {
debug!("ClipShader {}", name);
device.create_program(name, features)
}
#[derive(Debug, Clone, Copy, PartialOrd, Ord, PartialEq, Eq, Hash)]
pub struct ShaderHandle(usize);
#[derive(Default)]
pub struct ShaderLoader {
shaders: Vec<LazilyCompiledShader>,
}
impl ShaderLoader {
pub fn new() -> Self {
Default::default()
}
pub fn create_shader(
&mut self,
kind: ShaderKind,
name: &'static str,
unsorted_features: &[&'static str],
shader_list: &ShaderFeatures,
) -> Result<ShaderHandle, ShaderError> {
let index = self.shaders.len();
let shader = LazilyCompiledShader::new(
kind,
name,
unsorted_features,
shader_list,
)?;
self.shaders.push(shader);
Ok(ShaderHandle(index))
}
pub fn precache(
&mut self,
shader: ShaderHandle,
device: &mut Device,
flags: ShaderPrecacheFlags,
) -> Result<(), ShaderError> {
if !flags.intersects(ShaderPrecacheFlags::ASYNC_COMPILE | ShaderPrecacheFlags::FULL_COMPILE) {
return Ok(());
}
self.shaders[shader.0].precache(device, flags)
}
pub fn all_handles(&self) -> Vec<ShaderHandle> {
self.shaders.iter().enumerate().map(|(index, _)| ShaderHandle(index)).collect()
}
pub fn get(&mut self, handle: ShaderHandle) -> &mut LazilyCompiledShader {
&mut self.shaders[handle.0]
}
pub fn deinit(self, device: &mut Device) {
for shader in self.shaders {
shader.deinit(device);
}
}
}
pub struct Shaders {
loader: ShaderLoader,
cs_blur_rgba8: ShaderHandle,
cs_border_segment: ShaderHandle,
cs_border_solid: ShaderHandle,
cs_scale: Vec<Option<ShaderHandle>>,
cs_line_decoration: ShaderHandle,
cs_fast_linear_gradient: ShaderHandle,
cs_linear_gradient: ShaderHandle,
cs_radial_gradient: ShaderHandle,
cs_conic_gradient: ShaderHandle,
cs_svg_filter: ShaderHandle,
cs_svg_filter_node: ShaderHandle,
brush_solid: BrushShader,
brush_image: Vec<Option<BrushShader>>,
brush_fast_image: Vec<Option<BrushShader>>,
brush_blend: BrushShader,
brush_mix_blend: BrushShader,
brush_yuv_image: Vec<Option<BrushShader>>,
brush_linear_gradient: BrushShader,
brush_opacity: BrushShader,
brush_opacity_aa: BrushShader,
cs_clip_rectangle_slow: ShaderHandle,
cs_clip_rectangle_fast: ShaderHandle,
cs_clip_box_shadow: ShaderHandle,
ps_text_run: TextShader,
ps_text_run_dual_source: Option<TextShader>,
ps_split_composite: ShaderHandle,
ps_quad_textured: ShaderHandle,
ps_quad_radial_gradient: ShaderHandle,
ps_quad_conic_gradient: ShaderHandle,
ps_mask: ShaderHandle,
ps_mask_fast: ShaderHandle,
ps_clear: ShaderHandle,
ps_copy: ShaderHandle,
composite: CompositorShaders,
}
pub struct PendingShadersToPrecache {
precache_flags: ShaderPrecacheFlags,
remaining_shaders: VecDeque<ShaderHandle>,
}
impl Shaders {
pub fn new(
device: &mut Device,
gl_type: GlType,
options: &WebRenderOptions,
) -> Result<Self, ShaderError> {
let use_dual_source_blending =
device.get_capabilities().supports_dual_source_blending &&
options.allow_dual_source_blending;
let use_advanced_blend_equation =
device.get_capabilities().supports_advanced_blend_equation &&
options.allow_advanced_blend_equation;
let texture_external_version = if device.get_capabilities().supports_image_external_essl3 {
TextureExternalVersion::ESSL3
} else {
TextureExternalVersion::ESSL1
};
let mut shader_flags = get_shader_feature_flags(gl_type, texture_external_version, device);
shader_flags.set(ShaderFeatureFlags::ADVANCED_BLEND_EQUATION, use_advanced_blend_equation);
shader_flags.set(ShaderFeatureFlags::DUAL_SOURCE_BLENDING, use_dual_source_blending);
shader_flags.set(ShaderFeatureFlags::DITHERING, options.enable_dithering);
let shader_list = get_shader_features(shader_flags);
let mut loader = ShaderLoader::new();
let brush_solid = BrushShader::new(
"brush_solid",
&[],
&shader_list,
false ,
false ,
&mut loader,
)?;
let brush_blend = BrushShader::new(
"brush_blend",
&[],
&shader_list,
false ,
false ,
&mut loader,
)?;
let brush_mix_blend = BrushShader::new(
"brush_mix_blend",
&[],
&shader_list,
false ,
false ,
&mut loader,
)?;
let brush_linear_gradient = BrushShader::new(
"brush_linear_gradient",
if options.enable_dithering {
&[DITHERING_FEATURE]
} else {
&[]
},
&shader_list,
false ,
false ,
&mut loader,
)?;
let brush_opacity_aa = BrushShader::new(
"brush_opacity",
&["ANTIALIASING"],
&shader_list,
false ,
false ,
&mut loader,
)?;
let brush_opacity = BrushShader::new(
"brush_opacity",
&[],
&shader_list,
false ,
false ,
&mut loader,
)?;
let cs_blur_rgba8 = loader.create_shader(
ShaderKind::Cache(VertexArrayKind::Blur),
"cs_blur",
&["COLOR_TARGET"],
&shader_list,
)?;
let cs_svg_filter = loader.create_shader(
ShaderKind::Cache(VertexArrayKind::SvgFilter),
"cs_svg_filter",
&[],
&shader_list,
)?;
let cs_svg_filter_node = loader.create_shader(
ShaderKind::Cache(VertexArrayKind::SvgFilterNode),
"cs_svg_filter_node",
&[],
&shader_list,
)?;
let ps_mask = loader.create_shader(
ShaderKind::Cache(VertexArrayKind::Mask),
"ps_quad_mask",
&[],
&shader_list,
)?;
let ps_mask_fast = loader.create_shader(
ShaderKind::Cache(VertexArrayKind::Mask),
"ps_quad_mask",
&[FAST_PATH_FEATURE],
&shader_list,
)?;
let cs_clip_rectangle_slow = loader.create_shader(
ShaderKind::ClipCache(VertexArrayKind::ClipRect),
"cs_clip_rectangle",
&[],
&shader_list,
)?;
let cs_clip_rectangle_fast = loader.create_shader(
ShaderKind::ClipCache(VertexArrayKind::ClipRect),
"cs_clip_rectangle",
&[FAST_PATH_FEATURE],
&shader_list,
)?;
let cs_clip_box_shadow = loader.create_shader(
ShaderKind::ClipCache(VertexArrayKind::ClipBoxShadow),
"cs_clip_box_shadow",
&["TEXTURE_2D"],
&shader_list,
)?;
let mut cs_scale = Vec::new();
let scale_shader_num = IMAGE_BUFFER_KINDS.len();
for _ in 0 .. scale_shader_num {
cs_scale.push(None);
}
for image_buffer_kind in &IMAGE_BUFFER_KINDS {
if has_platform_support(*image_buffer_kind, device) {
let feature_string = get_feature_string(
*image_buffer_kind,
texture_external_version,
);
let mut features = Vec::new();
if feature_string != "" {
features.push(feature_string);
}
let shader = loader.create_shader(
ShaderKind::Cache(VertexArrayKind::Scale),
"cs_scale",
&features,
&shader_list,
)?;
let index = Self::get_compositing_shader_index(
*image_buffer_kind,
);
cs_scale[index] = Some(shader);
}
}
let ps_text_run = TextShader::new("ps_text_run",
&[],
&shader_list,
&mut loader,
)?;
let ps_text_run_dual_source = if use_dual_source_blending {
let dual_source_features = vec![DUAL_SOURCE_FEATURE];
Some(TextShader::new("ps_text_run",
&dual_source_features,
&shader_list,
&mut loader,
)?)
} else {
None
};
let ps_quad_textured = loader.create_shader(
ShaderKind::Primitive,
"ps_quad_textured",
&[],
&shader_list,
)?;
let ps_quad_radial_gradient = loader.create_shader(
ShaderKind::Primitive,
"ps_quad_radial_gradient",
&[],
&shader_list,
)?;
let ps_quad_conic_gradient = loader.create_shader(
ShaderKind::Primitive,
"ps_quad_conic_gradient",
&[],
&shader_list,
)?;
let ps_split_composite = loader.create_shader(
ShaderKind::Primitive,
"ps_split_composite",
&[],
&shader_list,
)?;
let ps_clear = loader.create_shader(
ShaderKind::Clear,
"ps_clear",
&[],
&shader_list,
)?;
let ps_copy = loader.create_shader(
ShaderKind::Copy,
"ps_copy",
&[],
&shader_list,
)?;
let mut image_features = Vec::new();
let mut brush_image = Vec::new();
let mut brush_fast_image = Vec::new();
for _ in 0 .. IMAGE_BUFFER_KINDS.len() {
brush_image.push(None);
brush_fast_image.push(None);
}
for buffer_kind in 0 .. IMAGE_BUFFER_KINDS.len() {
if !has_platform_support(IMAGE_BUFFER_KINDS[buffer_kind], device)
|| (IMAGE_BUFFER_KINDS[buffer_kind] == ImageBufferKind::TextureExternal
&& texture_external_version == TextureExternalVersion::ESSL1)
{
continue;
}
let feature_string = get_feature_string(
IMAGE_BUFFER_KINDS[buffer_kind],
texture_external_version,
);
if feature_string != "" {
image_features.push(feature_string);
}
brush_fast_image[buffer_kind] = Some(BrushShader::new(
"brush_image",
&image_features,
&shader_list,
use_advanced_blend_equation,
use_dual_source_blending,
&mut loader,
)?);
image_features.push("REPETITION");
image_features.push("ANTIALIASING");
brush_image[buffer_kind] = Some(BrushShader::new(
"brush_image",
&image_features,
&shader_list,
use_advanced_blend_equation,
use_dual_source_blending,
&mut loader,
)?);
image_features.clear();
}
let mut yuv_features = Vec::new();
let mut rgba_features = Vec::new();
let mut fast_path_features = Vec::new();
let yuv_shader_num = IMAGE_BUFFER_KINDS.len();
let mut brush_yuv_image = Vec::new();
for _ in 0 .. yuv_shader_num {
brush_yuv_image.push(None);
}
for image_buffer_kind in &IMAGE_BUFFER_KINDS {
if has_platform_support(*image_buffer_kind, device) {
yuv_features.push("YUV");
fast_path_features.push("FAST_PATH");
let index = Self::get_compositing_shader_index(
*image_buffer_kind,
);
let feature_string = get_feature_string(
*image_buffer_kind,
texture_external_version,
);
if feature_string != "" {
yuv_features.push(feature_string);
rgba_features.push(feature_string);
fast_path_features.push(feature_string);
}
if *image_buffer_kind != ImageBufferKind::TextureExternal ||
texture_external_version == TextureExternalVersion::ESSL3 {
let brush_shader = BrushShader::new(
"brush_yuv_image",
&yuv_features,
&shader_list,
false ,
false ,
&mut loader,
)?;
brush_yuv_image[index] = Some(brush_shader);
}
yuv_features.clear();
rgba_features.clear();
fast_path_features.clear();
}
}
let cs_line_decoration = loader.create_shader(
ShaderKind::Cache(VertexArrayKind::LineDecoration),
"cs_line_decoration",
&[],
&shader_list,
)?;
let cs_fast_linear_gradient = loader.create_shader(
ShaderKind::Cache(VertexArrayKind::FastLinearGradient),
"cs_fast_linear_gradient",
&[],
&shader_list,
)?;
let cs_linear_gradient = loader.create_shader(
ShaderKind::Cache(VertexArrayKind::LinearGradient),
"cs_linear_gradient",
&[],
&shader_list,
)?;
let cs_radial_gradient = loader.create_shader(
ShaderKind::Cache(VertexArrayKind::RadialGradient),
"cs_radial_gradient",
&[],
&shader_list,
)?;
let cs_conic_gradient = loader.create_shader(
ShaderKind::Cache(VertexArrayKind::ConicGradient),
"cs_conic_gradient",
&[],
&shader_list,
)?;
let cs_border_segment = loader.create_shader(
ShaderKind::Cache(VertexArrayKind::Border),
"cs_border_segment",
&[],
&shader_list,
)?;
let cs_border_solid = loader.create_shader(
ShaderKind::Cache(VertexArrayKind::Border),
"cs_border_solid",
&[],
&shader_list,
)?;
let composite = CompositorShaders::new(device, gl_type, &mut loader)?;
Ok(Shaders {
loader,
cs_blur_rgba8,
cs_border_segment,
cs_line_decoration,
cs_fast_linear_gradient,
cs_linear_gradient,
cs_radial_gradient,
cs_conic_gradient,
cs_border_solid,
cs_scale,
cs_svg_filter,
cs_svg_filter_node,
brush_solid,
brush_image,
brush_fast_image,
brush_blend,
brush_mix_blend,
brush_yuv_image,
brush_linear_gradient,
brush_opacity,
brush_opacity_aa,
cs_clip_rectangle_slow,
cs_clip_rectangle_fast,
cs_clip_box_shadow,
ps_text_run,
ps_text_run_dual_source,
ps_quad_textured,
ps_quad_radial_gradient,
ps_quad_conic_gradient,
ps_mask,
ps_mask_fast,
ps_split_composite,
ps_clear,
ps_copy,
composite,
})
}
#[must_use]
pub fn precache_all(
&mut self,
precache_flags: ShaderPrecacheFlags,
) -> PendingShadersToPrecache {
PendingShadersToPrecache {
precache_flags,
remaining_shaders: self.loader.all_handles().into(),
}
}
pub fn resume_precache(
&mut self,
device: &mut Device,
pending_shaders: &mut PendingShadersToPrecache,
) -> Result<bool, ShaderError> {
let Some(next_shader) = pending_shaders.remaining_shaders.pop_front() else {
return Ok(false)
};
self.loader.precache(next_shader, device, pending_shaders.precache_flags)?;
Ok(true)
}
fn get_compositing_shader_index(buffer_kind: ImageBufferKind) -> usize {
buffer_kind as usize
}
pub fn get_composite_shader(
&mut self,
format: CompositeSurfaceFormat,
buffer_kind: ImageBufferKind,
features: CompositeFeatures,
) -> &mut LazilyCompiledShader {
let shader_handle = self.composite.get_handle(format, buffer_kind, features);
self.loader.get(shader_handle)
}
pub fn get_scale_shader(
&mut self,
buffer_kind: ImageBufferKind,
) -> &mut LazilyCompiledShader {
let shader_index = Self::get_compositing_shader_index(buffer_kind);
let shader_handle = self.cs_scale[shader_index]
.expect("bug: unsupported scale shader requested");
self.loader.get(shader_handle)
}
pub fn get_quad_shader(
&mut self,
pattern: PatternKind
) -> &mut LazilyCompiledShader {
let shader_handle = match pattern {
PatternKind::ColorOrTexture => self.ps_quad_textured,
PatternKind::RadialGradient => self.ps_quad_radial_gradient,
PatternKind::ConicGradient => self.ps_quad_conic_gradient,
PatternKind::Mask => unreachable!(),
};
self.loader.get(shader_handle)
}
pub fn get(
&mut self,
key: &BatchKey,
features: BatchFeatures,
debug_flags: DebugFlags,
device: &Device,
) -> &mut LazilyCompiledShader {
let shader_handle = self.get_handle(key, features, debug_flags, device);
self.loader.get(shader_handle)
}
pub fn get_handle(
&mut self,
key: &BatchKey,
mut features: BatchFeatures,
debug_flags: DebugFlags,
device: &Device,
) -> ShaderHandle {
match key.kind {
BatchKind::Quad(PatternKind::ColorOrTexture) => {
self.ps_quad_textured
}
BatchKind::Quad(PatternKind::RadialGradient) => {
self.ps_quad_radial_gradient
}
BatchKind::Quad(PatternKind::ConicGradient) => {
self.ps_quad_conic_gradient
}
BatchKind::Quad(PatternKind::Mask) => {
unreachable!();
}
BatchKind::SplitComposite => {
self.ps_split_composite
}
BatchKind::Brush(brush_kind) => {
if device.get_capabilities().uses_native_antialiasing {
features.remove(BatchFeatures::ANTIALIASING);
}
let brush_shader = match brush_kind {
BrushBatchKind::Solid => {
&mut self.brush_solid
}
BrushBatchKind::Image(image_buffer_kind) => {
if features.contains(BatchFeatures::ANTIALIASING) ||
features.contains(BatchFeatures::REPETITION) {
self.brush_image[image_buffer_kind as usize]
.as_mut()
.expect("Unsupported image shader kind")
} else {
self.brush_fast_image[image_buffer_kind as usize]
.as_mut()
.expect("Unsupported image shader kind")
}
}
BrushBatchKind::Blend => {
&mut self.brush_blend
}
BrushBatchKind::MixBlend { .. } => {
&mut self.brush_mix_blend
}
BrushBatchKind::LinearGradient => {
if device.get_capabilities().uses_native_clip_mask {
features.remove(BatchFeatures::CLIP_MASK);
}
if !features.intersects(
BatchFeatures::ANTIALIASING
| BatchFeatures::REPETITION
| BatchFeatures::CLIP_MASK,
) {
features.remove(BatchFeatures::ALPHA_PASS);
}
match brush_kind {
BrushBatchKind::LinearGradient => &mut self.brush_linear_gradient,
_ => panic!(),
}
}
BrushBatchKind::YuvImage(image_buffer_kind, ..) => {
let shader_index =
Self::get_compositing_shader_index(image_buffer_kind);
self.brush_yuv_image[shader_index]
.as_mut()
.expect("Unsupported YUV shader kind")
}
BrushBatchKind::Opacity => {
if features.contains(BatchFeatures::ANTIALIASING) {
&mut self.brush_opacity_aa
} else {
&mut self.brush_opacity
}
}
};
brush_shader.get_handle(key.blend_mode, features, debug_flags)
}
BatchKind::TextRun(glyph_format) => {
let text_shader = match key.blend_mode {
BlendMode::SubpixelDualSource => self.ps_text_run_dual_source.as_mut().unwrap(),
_ => &mut self.ps_text_run,
};
text_shader.get_handle(glyph_format, debug_flags)
}
}
}
pub fn cs_blur_rgba8(&mut self) -> &mut LazilyCompiledShader { self.loader.get(self.cs_blur_rgba8) }
pub fn cs_border_segment(&mut self) -> &mut LazilyCompiledShader { self.loader.get(self.cs_border_segment) }
pub fn cs_border_solid(&mut self) -> &mut LazilyCompiledShader { self.loader.get(self.cs_border_solid) }
pub fn cs_line_decoration(&mut self) -> &mut LazilyCompiledShader { self.loader.get(self.cs_line_decoration) }
pub fn cs_fast_linear_gradient(&mut self) -> &mut LazilyCompiledShader { self.loader.get(self.cs_fast_linear_gradient) }
pub fn cs_linear_gradient(&mut self) -> &mut LazilyCompiledShader { self.loader.get(self.cs_linear_gradient) }
pub fn cs_radial_gradient(&mut self) -> &mut LazilyCompiledShader { self.loader.get(self.cs_radial_gradient) }
pub fn cs_conic_gradient(&mut self) -> &mut LazilyCompiledShader { self.loader.get(self.cs_conic_gradient) }
pub fn cs_svg_filter(&mut self) -> &mut LazilyCompiledShader { self.loader.get(self.cs_svg_filter) }
pub fn cs_svg_filter_node(&mut self) -> &mut LazilyCompiledShader { self.loader.get(self.cs_svg_filter_node) }
pub fn cs_clip_rectangle_slow(&mut self) -> &mut LazilyCompiledShader { self.loader.get(self.cs_clip_rectangle_slow) }
pub fn cs_clip_rectangle_fast(&mut self) -> &mut LazilyCompiledShader { self.loader.get(self.cs_clip_rectangle_fast) }
pub fn cs_clip_box_shadow(&mut self) -> &mut LazilyCompiledShader { self.loader.get(self.cs_clip_box_shadow) }
pub fn ps_quad_textured(&mut self) -> &mut LazilyCompiledShader { self.loader.get(self.ps_quad_textured) }
pub fn ps_mask(&mut self) -> &mut LazilyCompiledShader { self.loader.get(self.ps_mask) }
pub fn ps_mask_fast(&mut self) -> &mut LazilyCompiledShader { self.loader.get(self.ps_mask_fast) }
pub fn ps_clear(&mut self) -> &mut LazilyCompiledShader { self.loader.get(self.ps_clear) }
pub fn ps_copy(&mut self) -> &mut LazilyCompiledShader { self.loader.get(self.ps_copy) }
pub fn deinit(self, device: &mut Device) {
self.loader.deinit(device);
}
}
pub type SharedShaders = Rc<RefCell<Shaders>>;
pub struct CompositorShaders {
rgba: Vec<Option<ShaderHandle>>,
rgba_fast_path: Vec<Option<ShaderHandle>>,
yuv_clip: Vec<Option<ShaderHandle>>,
yuv_fast: Vec<Option<ShaderHandle>>,
}
impl CompositorShaders {
pub fn new(
device: &mut Device,
gl_type: GlType,
loader: &mut ShaderLoader,
) -> Result<Self, ShaderError> {
let mut yuv_clip_features = Vec::new();
let mut yuv_fast_features = Vec::new();
let mut rgba_features = Vec::new();
let mut fast_path_features = Vec::new();
let mut rgba = Vec::new();
let mut rgba_fast_path = Vec::new();
let mut yuv_clip = Vec::new();
let mut yuv_fast = Vec::new();
let texture_external_version = if device.get_capabilities().supports_image_external_essl3 {
TextureExternalVersion::ESSL3
} else {
TextureExternalVersion::ESSL1
};
let feature_flags = get_shader_feature_flags(gl_type, texture_external_version, device);
let shader_list = get_shader_features(feature_flags);
for _ in 0..IMAGE_BUFFER_KINDS.len() {
yuv_clip.push(None);
yuv_fast.push(None);
rgba.push(None);
rgba_fast_path.push(None);
}
for image_buffer_kind in &IMAGE_BUFFER_KINDS {
if !has_platform_support(*image_buffer_kind, device) {
continue;
}
yuv_clip_features.push("YUV");
yuv_fast_features.push("YUV");
yuv_fast_features.push("FAST_PATH");
fast_path_features.push("FAST_PATH");
let index = Self::get_shader_index(*image_buffer_kind);
let feature_string = get_feature_string(
*image_buffer_kind,
texture_external_version,
);
if feature_string != "" {
yuv_clip_features.push(feature_string);
yuv_fast_features.push(feature_string);
rgba_features.push(feature_string);
fast_path_features.push(feature_string);
}
if *image_buffer_kind != ImageBufferKind::TextureExternal ||
texture_external_version == TextureExternalVersion::ESSL3 {
yuv_clip[index] = Some(loader.create_shader(
ShaderKind::Composite,
"composite",
&yuv_clip_features,
&shader_list,
)?);
yuv_fast[index] = Some(loader.create_shader(
ShaderKind::Composite,
"composite",
&yuv_fast_features,
&shader_list,
)?);
}
rgba[index] = Some(loader.create_shader(
ShaderKind::Composite,
"composite",
&rgba_features,
&shader_list,
)?);
rgba_fast_path[index] = Some(loader.create_shader(
ShaderKind::Composite,
"composite",
&fast_path_features,
&shader_list,
)?);
yuv_fast_features.clear();
yuv_clip_features.clear();
rgba_features.clear();
fast_path_features.clear();
}
Ok(CompositorShaders {
rgba,
rgba_fast_path,
yuv_clip,
yuv_fast,
})
}
pub fn get_handle(
&mut self,
format: CompositeSurfaceFormat,
buffer_kind: ImageBufferKind,
features: CompositeFeatures,
) -> ShaderHandle {
match format {
CompositeSurfaceFormat::Rgba => {
if features.contains(CompositeFeatures::NO_UV_CLAMP)
&& features.contains(CompositeFeatures::NO_COLOR_MODULATION)
&& features.contains(CompositeFeatures::NO_CLIP_MASK)
{
let shader_index = Self::get_shader_index(buffer_kind);
self.rgba_fast_path[shader_index]
.expect("bug: unsupported rgba fast path shader requested")
} else {
let shader_index = Self::get_shader_index(buffer_kind);
self.rgba[shader_index]
.expect("bug: unsupported rgba shader requested")
}
}
CompositeSurfaceFormat::Yuv => {
let shader_index = Self::get_shader_index(buffer_kind);
if features.contains(CompositeFeatures::NO_CLIP_MASK) {
self.yuv_fast[shader_index]
.expect("bug: unsupported yuv shader requested")
} else {
self.yuv_clip[shader_index]
.expect("bug: unsupported yuv shader requested")
}
}
}
}
fn get_shader_index(buffer_kind: ImageBufferKind) -> usize {
buffer_kind as usize
}
}
fn get_shader_feature_flags(
gl_type: GlType,
texture_external_version: TextureExternalVersion,
device: &Device
) -> ShaderFeatureFlags {
match gl_type {
GlType::Gl => ShaderFeatureFlags::GL,
GlType::Gles => {
let mut flags = ShaderFeatureFlags::GLES;
flags |= match texture_external_version {
TextureExternalVersion::ESSL3 => ShaderFeatureFlags::TEXTURE_EXTERNAL,
TextureExternalVersion::ESSL1 => ShaderFeatureFlags::TEXTURE_EXTERNAL_ESSL1,
};
if device.supports_extension("GL_EXT_YUV_target") {
flags |= ShaderFeatureFlags::TEXTURE_EXTERNAL_BT709;
}
flags
}
}
}