1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
// This file is part of ICU4X.
//
// The contents of this file implement algorithms from Calendrical Calculations
// by Reingold & Dershowitz, Cambridge University Press, 4th edition (2018),
// which have been released as Lisp code at <https://github.com/EdReingold/calendar-code2/>
// under the Apache-2.0 license. Accordingly, this file is released under
// the Apache License, Version 2.0 which can be found at the calendrical_calculations
// package root or at http://www.apache.org/licenses/LICENSE-2.0.
// The algorithms in this file are rather well-published in multiple places,
// though the resource that was primarily used was
// J Jean Adler's _A Short History of the Jewish Fixed Calendar_, found
// at <https://hakirah.org/vol20Ajdler.pdf>, with more detailed appendices
// at <https://www.hakirah.org/vol20AjdlerAppendices.pdf>.
// Most of the math can be found on Wikipedia as well,
// at <https://en.wikipedia.org/wiki/Hebrew_calendar#The_four_gates>
//! Alternate, more efficient structures for working with the Hebrew Calendar
//! using the keviyah and Four Gates system
//!
//! The main entry point for this code is [`YearInfo::compute_for()`] and [`YearInfo::year_containing_rd()`],
//! which will efficiently calculate certain information about a Hebrew year, given the Hebrew year
//! or a date that falls within it, and produce it as a [`YearInfo`].
//!
//! From there, you can compute additional information via [`YearInfo::new_year()`] and by accessing
//! the methods on [`YearInfo::keviyah`].
//!
//!
//! # How this code works:
//!
//! ## How the Hebrew Calendar works
//!
//! The Hebrew calendar is a lunisolar calendar following a Metonic cycle: every 19 years, the pattern of
//! leap years repeats. However, the precise month lengths vary from cycle to cycle: There are a handful of
//! corrections performed to ensure that:
//!
//! - The lunar conjunction happens on or before the first day of the month
//! - Yom Kippur is not before or after the Sabbath
//! - Hoshana Rabbah is not on the Sabbath
//!
//! These corrections can be done using systematic calculations, which this code attempts to efficiently perform.
//!
//! ## Molad
//!
//! A molad is the time of a conjunction, the moment when the new moon occurs. The "Molad Tishrei" is
//! the conjunction corresponding to the month Tishrei, the first month, so it is the molad that starts the new year.
//! In this file we'll typically use "molad" to refer to the molad Tishrei of a year.
//!
//! The Hebrew calendar does not always start on the day of the molad Tishrei: it may be postponed one or two days.
//! However, the time in the week that the molad occurs is sufficient to know when it gets postponed to.
//!
//! ## Keviyah
//!
//! See also: the [`Keviyah`] type.
//!
//! This is the core concept being used here. Everything you need to know about the characteristics
//! of a hebrew year can be boiled down to a notion called the "keviyah" of a year. This
//! encapsulates three bits of information:
//!
//! - What day of the week the year starts on
//! - What the month lengths are
//! - What day of the week Passover starts on.
//!
//! While this seems like many possible combinations, only fourteen of them are possible.
//!
//! Knowing the Keviyah of the year you can understand exactly what the lengths of each month are.
//! Furthermore, if you know the week the year falls in, you can additionally understand what
//! the precise day of the new year is.
//!
//! [`YearInfo`] encapsulates these two pieces of information: the [`Keviyah`] and the number of weeks
//! since the epoch of the Hebrew calendar.
//!
//! ## The Four Gates table
//!
//! This is an efficient lookup based way of calculating the [`Keviyah`] for a year. In the Metonic cycle,
//! there are four broad types of year: leap years, years preceding leap years, years succeeding leap years,
//! and years sandwiched between leap years. For each of these year types, there is a partitioning
//! of the week into seven segments, and the [`Keviyah`] of that year depends on which segment the molad falls
//! in.
//!
//! So to calculate the [`Keviyah`] of a year, we can calculate its molad, pick the right partitioning based on the
//! year type, and see where the molad falls in that table.
use crate::helpers::i64_to_i32;
use crate::rata_die::RataDie;
use core::cmp::Ordering;
// A note on time notation
//
// Hebrew timekeeping has some differences from standard timekeeping. A Hebrew day is split into 24
// hours, each split into 1080 ḥalakim ("parts", abbreviated "ḥal" or "p"). Furthermore, the Hebrew
// day for calendrical purposes canonically starts at 6PM the previous evening, e.g. Hebrew Monday
// starts on Sunday 6PM. (For non-calendrical observational purposes this varies and is based on
// the sunset, but that is not too relevant for the algorithms here.)
//
// In this file an unqualified day of the week will refer to a standard weekday, and Hebrew weekdays
// will be referred to as "Hebrew Sunday" etc. Sometimes the term "regular" or "standard" will be used
// to refer to a standard weekday when we particularly wish to avoid ambiguity.
//
// Hebrew weeks start on Sunday. A common notation for times of the week looks like 2-5-204, which
// means "second Hebrew Day of the week, 5h 204 ḥal", which is 5h 204 ḥal after the start of Hebrew
// Monday (which is 23h:204ḥal on standard Sunday).
//
// Some resources will use ḥalakim notation when talking about time during a standard day. This
// document will use standard `:` notation for this, as used above with 23h:204ḥal being equal to
// 5h 204ḥal. In other words, if a time is notated using dashes or spaces, it is relative to the
// hebrew start of day, whereas if it is notated using a colon, it is relative to midnight.
//
// Finally, Adjler, the resource we are using, uses both inclusive and exclusive time notation. It
// is typical across resources using the 2-5-204 notation for the 2 to be "second day" as opposed
// to "two full days have passed" (i.e., on the first day). However *in the context of
// calculations* Adjler will use 1-5-204 to refer to stuff happening on Hebrew Monday, and clarify
// it as (2)-5-204. This is because zero-indexing works better in calculations.
//
// Comparing these algorithms with the source in Adjler should be careful about this. All other
// resources seem to universally 1-index in the dashes notation. This file will only use
// zero-indexed notation when explicitly disambiguated, usually when talking about intervals.
/// Calculate the number of months preceding the molad Tishrei for a given hebrew year (Tishrei is the first month)
#[inline]
fn months_preceding_molad(h_year: i32) -> i64 {
// Ft = INT((235N + 1 / 19))
// Where N = h_year - 1 (number of elapsed years since epoch)
// This math essentially comes from the Metonic cycle of 19 years containing
// 235 months: 12 months per year, plus an extra month for each of the 7 leap years.
(235 * (i64::from(h_year) - 1) + 1).div_euclid(19)
}
/// Conveniently create a constant for a ḥalakim (by default in 1-indexed notation). Produces a constant
/// that tracks the number of ḥalakim since the beginning of the week
macro_rules! ḥal {
($d:literal-$h:literal-$p:literal) => {{
const CONSTANT: i32 = (($d - 1) * 24 + $h) * 1080 + $p;
CONSTANT
}};
(0-indexed $d:literal-$h:literal-$p:literal) => {{
const CONSTANT: i32 = ($d * 24 + $h) * 1080 + $p;
CONSTANT
}};
}
/// The molad Beherad is the first molad, i.e. the molad of the epoch year.
/// It occurred on Oct 6, 3761 BC, 23h:204ḥal (Jerusalem Time, Julian Calendar)
///
/// Which is the second Hebrew day of the week (Hebrew Monday), 5h 204ḥal, 2-5-204.
/// ("Beharad" בהרד is just a way of writing 2-5-204, ב-ה-רד using Hebrew numerals)
///
/// This is 31524ḥal after the start of the week (Saturday 6PM)
///
/// From Adjler Appendix A
const MOLAD_BEHERAD_OFFSET: i32 = ḥal!(2 - 5 - 204);
/// The amount of time a Hebrew lunation takes (in ḥalakim). This is not exactly the amount of time
/// taken by one revolution of the moon (the real world seldom has events that are perfect integer
/// multiples of 1080ths of an hour), but it is what the Hebrew calendar uses. This does mean that
/// there will be drift over time with the actual state of the celestial sphere, however that is
/// irrelevant since the actual state of the celestial sphere is not what is used for the Hebrew
/// calendar.
///
/// This is 29-12-793 in zero-indexed notation. It is equal to 765433ḥal.
/// From Adjler Appendix A
const HEBREW_LUNATION_TIME: i32 = ḥal!(0-indexed 29-12-793);
/// From Reingold (ch 8.2, in implementation for fixed-from-hebrew)
const HEBREW_APPROX_YEAR_LENGTH: f64 = 35975351.0 / 98496.0;
/// The number of ḥalakim in a week
///
/// (This is 181440)
const ḤALAKIM_IN_WEEK: i64 = 1080 * 24 * 7;
/// The Hebrew calendar epoch. It did not need to be postponed, so it occurs on Hebrew Monday, Oct 7, 3761 BCE (Julian),
/// the same as the Molad Beherad.
///
/// (note that the molad Beherad occurs on standard Sunday, but because it happens after 6PM it is still Hebrew Monday)
const HEBREW_CALENDAR_EPOCH: RataDie = crate::julian::fixed_from_julian_book_version(-3761, 10, 7);
/// The minumum hebrew year supported by this code (this is the minimum value for i32)
pub const HEBREW_MIN_YEAR: i32 = i32::MIN;
/// The minumum R.D. supported by this code (this code will clamp outside of it)
// (this constant is verified by tests)
pub const HEBREW_MIN_RD: RataDie = RataDie::new(-784362951979);
/// The maximum hebrew year supported by this code (this is the maximum alue for i32)
// (this constant is verified by tests)
pub const HEBREW_MAX_YEAR: i32 = i32::MAX;
/// The maximum R.D. supported by this code (this is the last day in [`HEBREW_MAX_YEAR`])
// (this constant is verified by tests)
pub const HEBREW_MAX_RD: RataDie = RataDie::new(784360204356);
/// Given a Hebrew Year, returns its molad specified as:
///
/// - The number of weeks since the week of Beharad (Oct 6, 3761 BCE Julian)
/// - The number of ḥalakim since the start of the week (Hebrew Sunday, starting on Saturday at 18:00)
#[inline]
fn molad_details(h_year: i32) -> (i64, i32) {
let months_preceding = months_preceding_molad(h_year);
// The molad tishri expressed in parts since the beginning of the week containing Molad of Beharad
// Formula from Adjler Appendix A
let molad = MOLAD_BEHERAD_OFFSET as i64 + months_preceding * HEBREW_LUNATION_TIME as i64;
// Split into quotient and remainder
let weeks_since_beharad = molad.div_euclid(ḤALAKIM_IN_WEEK);
let in_week = molad.rem_euclid(ḤALAKIM_IN_WEEK);
let in_week = i32::try_from(in_week);
debug_assert!(in_week.is_ok(), "ḤALAKIM_IN_WEEK should fit in an i32");
(weeks_since_beharad, in_week.unwrap_or(0))
}
/// Everything about a given year. Can be conveniently packed down into an i64 if needed.
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
#[allow(clippy::exhaustive_structs)] // This may change but we're fine breaking this crate
pub struct YearInfo {
/// The Keviyah of the year
pub keviyah: Keviyah,
/// How many full weeks have passed since the week of Beharad
pub weeks_since_beharad: i64,
}
impl YearInfo {
/// Compute the YearInfo for a given year
#[inline]
pub fn compute_for(h_year: i32) -> Self {
let (mut weeks_since_beharad, ḥalakim) = molad_details(h_year);
let cycle_type = MetonicCycleType::for_h_year(h_year);
let keviyah = keviyah_for(cycle_type, ḥalakim);
// The last six hours of Hebrew Saturday (i.e. after noon on Regular Saturday)
// get unconditionally postponed to Monday according to the Four Gates table. This
// puts us in a new week!
if ḥalakim > ḥal!(7 - 18 - 0) {
weeks_since_beharad += 1;
}
Self {
keviyah,
weeks_since_beharad,
}
}
/// Returns the YearInfo and h_year for the year containing `date`
///
/// This will clamp the R.D. such that the hebrew year is within range for i32
#[inline]
pub fn year_containing_rd(date: RataDie) -> (Self, i32) {
#[allow(unused_imports)]
use core_maths::*;
let date = date.clamp(HEBREW_MIN_RD, HEBREW_MAX_RD);
let days_since_epoch = (date - HEBREW_CALENDAR_EPOCH) as f64;
let maybe_approx =
i64_to_i32(1 + days_since_epoch.div_euclid(HEBREW_APPROX_YEAR_LENGTH) as i64);
let approx = maybe_approx.unwrap_or_else(|e| e.saturate());
let yi = Self::compute_for(approx);
// compute if yi ⩼ rd
let cmp = yi.compare(date);
let (yi, h_year) = match cmp {
// The approx year is a year greater. Go one year down
Ordering::Greater => {
let prev = approx.saturating_sub(1);
(Self::compute_for(prev), prev)
}
// Bullseye
Ordering::Equal => (yi, approx),
// The approx year is a year lower. Go one year up.
Ordering::Less => {
let next = approx.saturating_add(1);
(Self::compute_for(next), next)
}
};
debug_assert!(yi.compare(date).is_eq(),
"Date {date:?} calculated approximately to Hebrew Year {approx} (comparison: {cmp:?}), \
should be contained in adjacent year {h_year} but that year is still {:?} it", yi.compare(date));
(yi, h_year)
}
/// Compare this year against a date. Returns Ordering::Greater
/// when this year is after the given date
///
/// i.e. this is computing self ⩼ rd
fn compare(self, rd: RataDie) -> Ordering {
let ny = self.new_year();
let len = self.keviyah.year_length();
if rd < ny {
Ordering::Greater
} else if rd >= ny + len.into() {
Ordering::Less
} else {
Ordering::Equal
}
}
/// Compute the date of New Year's Day
#[inline]
pub fn new_year(self) -> RataDie {
// Beharad started on Monday
const BEHARAD_START_OF_YEAR: StartOfYear = StartOfYear::Monday;
let days_since_beharad = (self.weeks_since_beharad * 7)
+ self.keviyah.start_of_year() as i64
- BEHARAD_START_OF_YEAR as i64;
HEBREW_CALENDAR_EPOCH + days_since_beharad
}
}
/// The Keviyah (קביעה) of a year. A year may be one of fourteen types, categorized by the day of
/// week of the new year (the first number, 1 = Sunday), the type of year (Deficient, Regular,
/// Complete), and the day of week of the first day of Passover. The last segment disambiguates
/// between cases that have the same first two but differ on whether they are leap years (since
/// Passover happens in Nisan, after the leap month Adar).
///
/// The discriminant values of these entries are according to
/// the positions these keviyot appear in the Four Gates table,
/// with the leap year ones being offset by 7. We don't directly rely on this
/// property but it is useful for potential bitpacking, and we use it as a way
/// to double-check that the four gates code is set up correctly. We do directly
/// rely on the leap-keviyot being after the regular ones (and starting with בחה) in is_leap.
///
/// For people unsure if their editor supports bidirectional text,
/// the first Keviyah (2D3) is Bet (ב), Ḥet (ח), Gimel (ג).
///
/// (The Hebrew values are used in code for two reasons: firstly, Rust identifiers
/// can't start with a number, and secondly, sources differ on the Latin alphanumeric notation
/// but use identical Hebrew notation)
#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Debug)]
#[allow(clippy::exhaustive_enums)] // There are only 14 keviyot (and always have been)
pub enum Keviyah {
// Regular years
/// 2D3
בחג = 0,
/// 2C5
בשה = 1,
/// 3R5
גכה = 2,
/// 5R7
הכז = 3,
/// 5C1
השא = 4,
/// 7D1
זחא = 5,
/// 7C3
זשג = 6,
// Leap years
/// 2D5
בחה = 7,
/// 2C7
בשז = 8,
/// 3R7
גכז = 9,
/// 5D1
החא = 10,
/// 5C3
השג = 11,
/// 7D3
זחג = 12,
/// 7C5
זשה = 13,
}
/// The type of year it is
#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Debug)]
#[allow(clippy::exhaustive_enums)] // This is intrinsic to the calendar
pub enum YearType {
/// חסרה: both Ḥeshvan and Kislev have 29 days
Deficient = -1,
/// כסדרה: Ḥeshvan has 29, Kislev has 30
Regular = 0,
/// שלמה: both Ḥeshvan and Kislev have 30 days
Complete = 1,
}
impl YearType {
/// The length correction from a regular year (354/385)
fn length_correction(self) -> i8 {
self as i8
}
/// The length of Ḥeshvan
fn ḥeshvan_length(self) -> u8 {
if self == Self::Complete {
ḤESHVAN_DEFAULT_LEN + 1
} else {
ḤESHVAN_DEFAULT_LEN
}
}
/// The length correction of Kislev
fn kislev_length(self) -> u8 {
if self == Self::Deficient {
KISLEV_DEFAULT_LEN - 1
} else {
KISLEV_DEFAULT_LEN
}
}
}
/// The day of the new year. Only these four days are permitted.
#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Debug)]
#[allow(clippy::exhaustive_enums)] // This is intrinsic to the calendar
pub enum StartOfYear {
// Compiler forced me to document these, <https://en.wikipedia.org/wiki/Nowe_Ateny>
/// Monday (everyone knows what Monday is)
Monday = 2,
/// Tuesday (everyone knows what Tuesday is)
Tuesday = 3,
/// Thursday (everyone knows what Thursday is)
Thursday = 5,
/// Saturday (everyone knows what Saturday is)
Saturday = 7,
}
// Given a constant expression of the type FOO + BAR + BAZ convert
// every element into a u16 and return
macro_rules! u16_cvt(
// the $first / $rest pattern is needed since
// macros cannot use `+` as a separator in repetition
($first:ident $(+ $rest:ident)*) => {
{
// make sure it is constant
// we use as here because it works in consts and in this context
// overflow will panic anyway
const COMPUTED: u16 = $first as u16 $(+ $rest as u16)*;
COMPUTED
}
};
);
// Month lengths (ref: https://en.wikipedia.org/wiki/Hebrew_calendar#Months)
const TISHREI_LEN: u8 = 30;
// except in Complete years
const ḤESHVAN_DEFAULT_LEN: u8 = 29;
// Except in Deficient years
const KISLEV_DEFAULT_LEN: u8 = 30;
const TEVET_LEN: u8 = 29;
const SHEVAT_LEN: u8 = 30;
const ADARI_LEN: u8 = 30;
const ADAR_LEN: u8 = 29;
const NISAN_LEN: u8 = 30;
const IYYAR_LEN: u8 = 29;
const SIVAN_LEN: u8 = 30;
const TAMMUZ_LEN: u8 = 29;
const AV_LEN: u8 = 30;
const ELUL_LEN: u8 = 29;
/// Normalized month constant for Tishrei
///
/// These are not ordinal months, rather these are the month number in a regular year
/// Adar, Adar I and Adar II all normalize to 6
pub const TISHREI: u8 = 1;
/// Normalized month constant (see [`TISHREI`])
pub const ḤESHVAN: u8 = 2;
/// Normalized month constant (see [`TISHREI`])
pub const KISLEV: u8 = 3;
/// Normalized month constant (see [`TISHREI`])
pub const TEVET: u8 = 4;
/// Normalized month constant (see [`TISHREI`])
pub const SHEVAT: u8 = 5;
/// Normalized month constant (see [`TISHREI`])
pub const ADAR: u8 = 6;
/// Normalized month constant (see [`TISHREI`])
pub const NISAN: u8 = 7;
/// Normalized month constant (see [`TISHREI`])
pub const IYYAR: u8 = 8;
/// Normalized month constant (see [`TISHREI`])
pub const SIVAN: u8 = 9;
/// Normalized month constant (see [`TISHREI`])
pub const TAMMUZ: u8 = 10;
/// Normalized month constant (see [`TISHREI`])
pub const AV: u8 = 11;
/// Normalized month constant (see [`TISHREI`])
pub const ELUL: u8 = 12;
impl Keviyah {
/// Get the type of year for this Keviyah.
///
/// Comes from the second letter in this Keviyah:
/// ח = D, כ = R, ש = C
#[inline]
pub fn year_type(self) -> YearType {
match self {
Self::בחג => YearType::Deficient,
Self::בשה => YearType::Complete,
Self::גכה => YearType::Regular,
Self::הכז => YearType::Regular,
Self::השא => YearType::Complete,
Self::זחא => YearType::Deficient,
Self::זשג => YearType::Complete,
Self::בחה => YearType::Deficient,
Self::בשז => YearType::Complete,
Self::גכז => YearType::Regular,
Self::החא => YearType::Deficient,
Self::השג => YearType::Complete,
Self::זחג => YearType::Deficient,
Self::זשה => YearType::Complete,
}
}
/// Get the day of the new year for this Keviyah
///
/// Comes from the first letter in this Keviyah:
/// ב = 2 = Monday, ג = 3 = Tuesday, ה = 5 = Thursday, ז = 7 = Saturday
#[inline]
pub fn start_of_year(self) -> StartOfYear {
match self {
Self::בחג => StartOfYear::Monday,
Self::בשה => StartOfYear::Monday,
Self::גכה => StartOfYear::Tuesday,
Self::הכז => StartOfYear::Thursday,
Self::השא => StartOfYear::Thursday,
Self::זחא => StartOfYear::Saturday,
Self::זשג => StartOfYear::Saturday,
Self::בחה => StartOfYear::Monday,
Self::בשז => StartOfYear::Monday,
Self::גכז => StartOfYear::Tuesday,
Self::החא => StartOfYear::Thursday,
Self::השג => StartOfYear::Thursday,
Self::זחג => StartOfYear::Saturday,
Self::זשה => StartOfYear::Saturday,
}
}
/// Normalize the ordinal month to the "month number" in the year (ignoring
/// leap months), i.e. Adar and Adar II are both represented by 6.
///
/// Returns None if given the index of Adar I (6 in a leap year)
#[inline]
fn normalized_ordinal_month(self, ordinal_month: u8) -> Option<u8> {
if self.is_leap() {
match ordinal_month.cmp(&6) {
// Adar I
Ordering::Equal => None,
Ordering::Less => Some(ordinal_month),
Ordering::Greater => Some(ordinal_month - 1),
}
} else {
Some(ordinal_month)
}
}
/// Given an ordinal, civil month (1-indexed month starting at Tishrei)
/// return its length
#[inline]
pub fn month_len(self, ordinal_month: u8) -> u8 {
// Normalize it to the month number
let Some(normalized_ordinal_month) = self.normalized_ordinal_month(ordinal_month) else {
return ADARI_LEN;
};
debug_assert!(normalized_ordinal_month <= 12 && normalized_ordinal_month > 0);
match normalized_ordinal_month {
TISHREI => TISHREI_LEN,
ḤESHVAN => self.year_type().ḥeshvan_length(),
KISLEV => self.year_type().kislev_length(),
TEVET => TEVET_LEN,
SHEVAT => SHEVAT_LEN,
ADAR => ADAR_LEN,
NISAN => NISAN_LEN,
IYYAR => IYYAR_LEN,
SIVAN => SIVAN_LEN,
TAMMUZ => TAMMUZ_LEN,
AV => AV_LEN,
ELUL => ELUL_LEN,
_ => {
debug_assert!(false, "Got unknown month index {ordinal_month}");
30
}
}
}
/// Get the number of days preceding this month
#[inline]
pub fn days_preceding(self, ordinal_month: u8) -> u16 {
// convenience constant to keep the additions smallish
// Number of days before (any) Adar in a regular year
const BEFORE_ADAR_DEFAULT_LEN: u16 = u16_cvt!(
TISHREI_LEN + ḤESHVAN_DEFAULT_LEN + KISLEV_DEFAULT_LEN + TEVET_LEN + SHEVAT_LEN
);
let Some(normalized_ordinal_month) = self.normalized_ordinal_month(ordinal_month) else {
// Get Adar I out of the way
let corrected =
BEFORE_ADAR_DEFAULT_LEN as i16 + i16::from(self.year_type().length_correction());
return corrected as u16;
};
debug_assert!(normalized_ordinal_month <= ELUL && normalized_ordinal_month > 0);
let year_type = self.year_type();
let mut days = match normalized_ordinal_month {
TISHREI => 0,
ḤESHVAN => u16_cvt!(TISHREI_LEN),
KISLEV => u16_cvt!(TISHREI_LEN) + u16::from(year_type.ḥeshvan_length()),
// Use default lengths after this, we'll apply the correction later
// (This helps optimize this into a simple jump table)
TEVET => u16_cvt!(TISHREI_LEN + ḤESHVAN_DEFAULT_LEN + KISLEV_DEFAULT_LEN),
SHEVAT => u16_cvt!(TISHREI_LEN + ḤESHVAN_DEFAULT_LEN + KISLEV_DEFAULT_LEN + TEVET_LEN),
ADAR => BEFORE_ADAR_DEFAULT_LEN,
NISAN => u16_cvt!(BEFORE_ADAR_DEFAULT_LEN + ADAR_LEN),
IYYAR => u16_cvt!(BEFORE_ADAR_DEFAULT_LEN + ADAR_LEN + NISAN_LEN),
SIVAN => u16_cvt!(BEFORE_ADAR_DEFAULT_LEN + ADAR_LEN + NISAN_LEN + IYYAR_LEN),
TAMMUZ => {
u16_cvt!(BEFORE_ADAR_DEFAULT_LEN + ADAR_LEN + NISAN_LEN + IYYAR_LEN + SIVAN_LEN)
}
#[rustfmt::skip]
AV => u16_cvt!(BEFORE_ADAR_DEFAULT_LEN + ADAR_LEN + NISAN_LEN + IYYAR_LEN + SIVAN_LEN + TAMMUZ_LEN),
#[rustfmt::skip]
_ => u16_cvt!(BEFORE_ADAR_DEFAULT_LEN + ADAR_LEN + NISAN_LEN + IYYAR_LEN + SIVAN_LEN + TAMMUZ_LEN + AV_LEN),
};
// If it is after Kislev and Ḥeshvan, we should add the year correction
if normalized_ordinal_month > KISLEV {
// Ensure the casts are fine
debug_assert!(days > 1 && year_type.length_correction().abs() <= 1);
days = (days as i16 + year_type.length_correction() as i16) as u16;
}
// In a leap year, after Adar (and including Adar II), we should add
// the length of Adar 1
if normalized_ordinal_month >= ADAR && self.is_leap() {
days += u16::from(ADARI_LEN);
}
days
}
/// Given a day of the year, return the ordinal month and day as (month, day).
pub fn month_day_for(self, mut day: u16) -> (u8, u8) {
for month in 1..14 {
let month_len = self.month_len(month);
if let Ok(day) = u8::try_from(day) {
if day <= month_len {
return (month, day);
}
}
day -= u16::from(month_len);
}
debug_assert!(false, "Attempted to get Hebrew date for {day:?}, in keviyah {self:?}, didn't have enough days in the year");
self.last_month_day_in_year()
}
/// Return the last ordinal month and day in this year as (month, day)
#[inline]
pub fn last_month_day_in_year(self) -> (u8, u8) {
// Elul is always the last month of the year
if self.is_leap() {
(13, ELUL_LEN)
} else {
(12, ELUL_LEN)
}
}
/// Whether this year is a leap year
#[inline]
pub fn is_leap(self) -> bool {
debug_assert_eq!(Self::בחה as u8, 7, "Representation of keviyot changed!");
// Because we have arranged our keviyot such that all leap keviyot come after
// the regular ones, this just a comparison
self >= Self::בחה
}
/// Given the hebrew year for this Keviyah, calculate the YearInfo
#[inline]
pub fn year_info(self, h_year: i32) -> YearInfo {
let (mut weeks_since_beharad, ḥalakim) = molad_details(h_year);
// The last six hours of Hebrew Saturday (i.e. after noon on Regular Saturday)
// get unconditionally postponed to Monday according to the Four Gates table. This
// puts us in a new week!
if ḥalakim > ḥal!(7 - 18 - 0) {
weeks_since_beharad += 1;
}
YearInfo {
keviyah: self,
weeks_since_beharad,
}
}
/// How many days are in this year
#[inline]
pub fn year_length(self) -> u16 {
let base_year_length = if self.is_leap() { 384 } else { 354 };
(base_year_length + i16::from(self.year_type().length_correction())) as u16
}
/// Construct this from an integer between 0 and 13
///
/// Potentially useful for bitpacking
#[inline]
pub fn from_integer(integer: u8) -> Self {
debug_assert!(
integer < 14,
"Keviyah::from_integer() takes in a number between 0 and 13 inclusive"
);
match integer {
0 => Self::בחג,
1 => Self::בשה,
2 => Self::גכה,
3 => Self::הכז,
4 => Self::השא,
5 => Self::זחא,
6 => Self::זשג,
7 => Self::בחה,
8 => Self::בשז,
9 => Self::גכז,
10 => Self::החא,
11 => Self::השג,
12 => Self::זחג,
_ => Self::זשה,
}
}
}
// Four Gates Table
// ======================
///
// The Four Gates table is a table that takes the time of week of the molad
// and produces a Keviyah for the year
/// "Metonic cycle" in general refers to any 19-year repeating pattern used by lunisolar
/// calendars. The Hebrew calendar uses one where years 3, 6, 8, 11, 14, 17, 19
/// are leap years.
///
/// The Hebrew calendar further categorizes regular years as whether they come before/after/or
/// between leap years, and this is used when performing lookups.
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
enum MetonicCycleType {
/// Before a leap year (2, 5, 10, 13, 16)
LMinusOne,
/// After a leap year (1, 4, 9, 12, 15)
LPlusOne,
/// Between leap years (7. 18)
LPlusMinusOne,
/// Leap year (3, 6, 8, 11, 14, 17, 19)
Leap,
}
impl MetonicCycleType {
fn for_h_year(h_year: i32) -> Self {
// h_year is 1-indexed, and our metonic cycle year numberings
// are 1-indexed, so we really need to do `(h_year - 1) % 19 + 1`
//
// However, that is equivalent to `h_year % 19` provided you handle the
// fact that that operation will produce 0 instead of 19.
// Both numbers end up in our wildcard leap year arm so that's fine.
let remainder = h_year.rem_euclid(19);
match remainder {
// These numbers are 1-indexed
2 | 5 | 10 | 13 | 16 => Self::LMinusOne,
1 | 4 | 9 | 12 | 15 => Self::LPlusOne,
7 | 18 => Self::LPlusMinusOne,
_ => {
debug_assert!(matches!(remainder, 3 | 6 | 8 | 11 | 14 | 17 | 0 | 19));
Self::Leap
}
}
}
}
// The actual Four Gates tables.
//
// Each entry is a range (ending at the next entry), and it corresponds to the equivalent discriminant value of the Keviyah type.
// Leap and regular years map to different Keviyah values, however regular years all map to the same set of
// seven values, with differing ḥalakim bounds for each. The first entry in the Four Gates table straddles the end of the previous week
// and the beginning of this one.
//
// The regular-year tables only differ by their third and last entries (We may be able to write this as more compact code)
//
// You can reference these tables from https://en.wikipedia.org/wiki/Hebrew_calendar#The_four_gates
// or from Adjler (Appendix 4). Be sure to look at the Adjler table referring the "modern calendar", older tables
// use slightly different numbers.
const FOUR_GATES_LMINUSONE: [i32; 7] = [
ḥal!(7 - 18 - 0),
ḥal!(1 - 9 - 204),
ḥal!(2 - 18 - 0),
ḥal!(3 - 9 - 204),
ḥal!(5 - 9 - 204),
ḥal!(5 - 18 - 0),
ḥal!(6 - 9 - 204),
];
const FOUR_GATES_LPLUSONE: [i32; 7] = [
ḥal!(7 - 18 - 0),
ḥal!(1 - 9 - 204),
ḥal!(2 - 15 - 589),
ḥal!(3 - 9 - 204),
ḥal!(5 - 9 - 204),
ḥal!(5 - 18 - 0),
ḥal!(6 - 0 - 408),
];
const FOUR_GATES_LPLUSMINUSONE: [i32; 7] = [
ḥal!(7 - 18 - 0),
ḥal!(1 - 9 - 204),
ḥal!(2 - 15 - 589),
ḥal!(3 - 9 - 204),
ḥal!(5 - 9 - 204),
ḥal!(5 - 18 - 0),
ḥal!(6 - 9 - 204),
];
const FOUR_GATES_LEAP: [i32; 7] = [
ḥal!(7 - 18 - 0),
ḥal!(1 - 20 - 491),
ḥal!(2 - 18 - 0),
ḥal!(3 - 18 - 0),
ḥal!(4 - 11 - 695),
ḥal!(5 - 18 - 0),
ḥal!(6 - 20 - 491),
];
/// Perform the four gates calculation, giving you the Keviyah for a given year type and
/// the ḥalakim-since-beginning-of-week of its molad Tishri
#[inline]
fn keviyah_for(year_type: MetonicCycleType, ḥalakim: i32) -> Keviyah {
let gate = match year_type {
MetonicCycleType::LMinusOne => FOUR_GATES_LMINUSONE,
MetonicCycleType::LPlusOne => FOUR_GATES_LPLUSONE,
MetonicCycleType::LPlusMinusOne => FOUR_GATES_LPLUSMINUSONE,
MetonicCycleType::Leap => FOUR_GATES_LEAP,
};
// Calculate the non-leap and leap keviyot for this year
// This could potentially be made more efficient by just finding
// the right window on `gate` and transmuting, but this unrolled loop should be fine too.
let keviyot = if ḥalakim >= gate[0] || ḥalakim < gate[1] {
(Keviyah::בחג, Keviyah::בחה)
} else if ḥalakim < gate[2] {
(Keviyah::בשה, Keviyah::בשז)
} else if ḥalakim < gate[3] {
(Keviyah::גכה, Keviyah::גכז)
} else if ḥalakim < gate[4] {
(Keviyah::הכז, Keviyah::החא)
} else if ḥalakim < gate[5] {
(Keviyah::השא, Keviyah::השג)
} else if ḥalakim < gate[6] {
(Keviyah::זחא, Keviyah::זחג)
} else {
(Keviyah::זשג, Keviyah::זשה)
};
// We have conveniently set the discriminant value of Keviyah to match the four gates index
// Let's just assert to make sure the table above is correct.
debug_assert!(
keviyot.0 as u8 + 7 == keviyot.1 as u8,
"The table above should produce matching-indexed keviyot for the leap/non-leap year"
);
#[cfg(debug_assertions)]
#[allow(clippy::indexing_slicing)] // debug_assertion code
if keviyot.0 as u8 == 0 {
// The first entry in the gates table straddles the ends of the week
debug_assert!(
ḥalakim >= gate[keviyot.0 as usize] || ḥalakim < gate[(keviyot.0 as usize + 1) % 7],
"The table above should produce the right indexed keviyah, instead found {keviyot:?} for time {ḥalakim} (year type {year_type:?})"
);
} else {
// Other entries must properly bound the ḥalakim
debug_assert!(
ḥalakim >= gate[keviyot.0 as usize] && ḥalakim < gate[(keviyot.0 as usize + 1) % 7],
"The table above should produce the right indexed keviyah, instead found {keviyot:?} for time {ḥalakim} (year type {year_type:?})"
);
}
if year_type == MetonicCycleType::Leap {
keviyot.1
} else {
keviyot.0
}
}
#[cfg(test)]
mod test {
use super::*;
use crate::hebrew::{self, BookHebrew};
#[test]
fn test_consts() {
assert_eq!(MOLAD_BEHERAD_OFFSET, 31524);
assert_eq!(ḤALAKIM_IN_WEEK, 181440);
// Adjler's printed value for this constant is incorrect (as confirmed by Adjler over email).
// Adjler is correct about the value being ḥal!(0-indexed 29-12-793).
// which matches the math used in `crate::hebrew::molad()` from Calendrical Calculations.
//
// The correct constant is seen in <https://en.wikibooks.org/wiki/Computer_Programming/Hebrew_calendar>
assert_eq!(HEBREW_LUNATION_TIME, 765433);
// Nicer to have the code be self-contained, but always worth asserting
assert_eq!(HEBREW_CALENDAR_EPOCH, hebrew::FIXED_HEBREW_EPOCH);
}
#[test]
fn test_roundtrip_days() {
for h_year in (1..10).chain(5775..5795).chain(10000..10010) {
let year_info = YearInfo::compute_for(h_year);
let ny = year_info.new_year();
for day in 1..=year_info.keviyah.year_length() {
let offset_date = ny + i64::from(day) - 1;
let (offset_yearinfo, offset_h_year) = YearInfo::year_containing_rd(offset_date);
assert_eq!(
offset_h_year, h_year,
"Backcomputed h_year should be same for day {day} in Hebrew Year {h_year}"
);
assert_eq!(
offset_yearinfo, year_info,
"Backcomputed YearInfo should be same for day {day} in Hebrew Year {h_year}"
);
let (month, day2) = year_info.keviyah.month_day_for(day);
let days_preceding = year_info.keviyah.days_preceding(month);
assert_eq!(
days_preceding + u16::from(day2),
day,
"{h_year}-{month}-{day2} should round trip for day-of-year {day}"
)
}
}
}
#[test]
fn test_book_parity() {
let mut last_year = None;
for h_year in (1..100).chain(5600..5900).chain(10000..10100) {
let book_date = BookHebrew::from_civil_date(h_year, 1, 1);
let book_ny = BookHebrew::fixed_from_book_hebrew(book_date);
let kv_yearinfo = YearInfo::compute_for(h_year);
let kv_ny = kv_yearinfo.new_year();
assert_eq!(
book_ny,
kv_ny,
"Book and Keviyah-based years should match for Hebrew Year {h_year}. Got YearInfo {kv_yearinfo:?}"
);
let book_is_leap = BookHebrew::is_hebrew_leap_year(h_year);
assert_eq!(
book_is_leap,
kv_yearinfo.keviyah.is_leap(),
"Book and Keviyah-based years should match for Hebrew Year {h_year}. Got YearInfo {kv_yearinfo:?}"
);
let book_year_len = BookHebrew::days_in_book_hebrew_year(h_year);
let book_year_type = match book_year_len {
355 | 385 => YearType::Complete,
354 | 384 => YearType::Regular,
353 | 383 => YearType::Deficient,
_ => unreachable!("Found unexpected book year len {book_year_len}"),
};
assert_eq!(
book_year_type,
kv_yearinfo.keviyah.year_type(),
"Book and Keviyah-based years should match for Hebrew Year {h_year}. Got YearInfo {kv_yearinfo:?}"
);
let kv_recomputed_yearinfo = kv_yearinfo.keviyah.year_info(h_year);
assert_eq!(
kv_recomputed_yearinfo,
kv_yearinfo,
"Recomputed YearInfo should match for Hebrew Year {h_year}. Got YearInfo {kv_yearinfo:?}"
);
let year_len = kv_yearinfo.keviyah.year_length();
let month_range = if kv_yearinfo.keviyah.is_leap() {
1..14
} else {
1..13
};
let mut days_preceding = 0;
for month in month_range {
let kv_month_len = kv_yearinfo.keviyah.month_len(month);
let book_date = BookHebrew::from_civil_date(h_year, month, 1);
let book_month_len =
BookHebrew::last_day_of_book_hebrew_month(book_date.year, book_date.month);
assert_eq!(kv_month_len, book_month_len, "Month lengths should be same for ordinal hebrew month {month} in year {h_year}. Got YearInfo {kv_yearinfo:?}");
assert_eq!(days_preceding, kv_yearinfo.keviyah.days_preceding(month), "Days preceding should be the sum of preceding days for ordinal hebrew month {month} in year {h_year}. Got YearInfo {kv_yearinfo:?}");
days_preceding += u16::from(kv_month_len);
}
for offset in [0, 1, 100, year_len - 100, year_len - 2, year_len - 1] {
let offset_date = kv_ny + offset.into();
let (offset_yearinfo, offset_h_year) = YearInfo::year_containing_rd(offset_date);
assert_eq!(offset_h_year, h_year, "Backcomputed h_year should be same for date {offset_date:?} in Hebrew Year {h_year} (offset from ny {offset})");
assert_eq!(offset_yearinfo, kv_yearinfo, "Backcomputed YearInfo should be same for date {offset_date:?} in Hebrew Year {h_year} (offset from ny {offset})");
}
if let Some((last_h_year, predicted_ny)) = last_year {
if last_h_year + 1 == h_year {
assert_eq!(predicted_ny, kv_ny, "{last_h_year}'s YearInfo predicts New Year {predicted_ny:?}, which does not match current new year. Got YearInfo {kv_yearinfo:?}");
}
}
last_year = Some((h_year, kv_ny + year_len.into()))
}
}
#[test]
fn test_minmax() {
let min = YearInfo::compute_for(HEBREW_MIN_YEAR);
let min_ny = min.new_year();
assert_eq!(min_ny, HEBREW_MIN_RD);
let (recomputed_yi, recomputed_y) = YearInfo::year_containing_rd(min_ny);
assert_eq!(recomputed_y, HEBREW_MIN_YEAR);
assert_eq!(recomputed_yi, min);
let max = YearInfo::compute_for(HEBREW_MAX_YEAR);
let max_ny = max.new_year();
// -1 since max_ny is also a part of the year
let max_last = max_ny + i64::from(max.keviyah.year_length()) - 1;
assert_eq!(max_last, HEBREW_MAX_RD);
let (recomputed_yi, recomputed_y) = YearInfo::year_containing_rd(max_last);
assert_eq!(recomputed_y, HEBREW_MAX_YEAR);
assert_eq!(recomputed_yi, max);
}
#[test]
fn test_leap_agreement() {
for year0 in -1000..1000 {
let year1 = year0 + 1;
let info0 = YearInfo::compute_for(year0);
let info1 = YearInfo::compute_for(year1);
let num_months = (info1.new_year() - info0.new_year()) / 29;
if info0.keviyah.is_leap() {
assert_eq!(num_months, 13, "{year0}");
} else {
assert_eq!(num_months, 12, "{year0}");
}
}
}
}