1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at https://mozilla.org/MPL/2.0/. */

//! Generic types for CSS values that are related to transformations.

use crate::values::computed::length::Length as ComputedLength;
use crate::values::computed::length::LengthPercentage as ComputedLengthPercentage;
use crate::values::specified::angle::Angle as SpecifiedAngle;
use crate::values::specified::length::Length as SpecifiedLength;
use crate::values::specified::length::LengthPercentage as SpecifiedLengthPercentage;
use crate::values::{computed, CSSFloat};
use crate::{Zero, ZeroNoPercent};
use euclid::default::{Rect, Transform3D};
use std::fmt::{self, Write};
use style_traits::{CssWriter, ToCss};

/// A generic 2D transformation matrix.
#[allow(missing_docs)]
#[derive(
    Clone,
    Copy,
    Debug,
    Deserialize,
    MallocSizeOf,
    PartialEq,
    Serialize,
    SpecifiedValueInfo,
    ToComputedValue,
    ToCss,
    ToResolvedValue,
    ToShmem,
)]
#[css(comma, function = "matrix")]
#[repr(C)]
pub struct GenericMatrix<T> {
    pub a: T,
    pub b: T,
    pub c: T,
    pub d: T,
    pub e: T,
    pub f: T,
}

pub use self::GenericMatrix as Matrix;

#[allow(missing_docs)]
#[cfg_attr(rustfmt, rustfmt_skip)]
#[derive(
    Clone,
    Copy,
    Debug,
    Deserialize,
    MallocSizeOf,
    PartialEq,
    Serialize,
    SpecifiedValueInfo,
    ToComputedValue,
    ToCss,
    ToResolvedValue,
    ToShmem,
)]
#[css(comma, function = "matrix3d")]
#[repr(C)]
pub struct GenericMatrix3D<T> {
    pub m11: T, pub m12: T, pub m13: T, pub m14: T,
    pub m21: T, pub m22: T, pub m23: T, pub m24: T,
    pub m31: T, pub m32: T, pub m33: T, pub m34: T,
    pub m41: T, pub m42: T, pub m43: T, pub m44: T,
}

pub use self::GenericMatrix3D as Matrix3D;

#[cfg_attr(rustfmt, rustfmt_skip)]
impl<T: Into<f64>> From<Matrix<T>> for Transform3D<f64> {
    #[inline]
    fn from(m: Matrix<T>) -> Self {
        Transform3D::new(
            m.a.into(), m.b.into(), 0.0, 0.0,
            m.c.into(), m.d.into(), 0.0, 0.0,
            0.0,        0.0,        1.0, 0.0,
            m.e.into(), m.f.into(), 0.0, 1.0,
        )
    }
}

#[cfg_attr(rustfmt, rustfmt_skip)]
impl<T: Into<f64>> From<Matrix3D<T>> for Transform3D<f64> {
    #[inline]
    fn from(m: Matrix3D<T>) -> Self {
        Transform3D::new(
            m.m11.into(), m.m12.into(), m.m13.into(), m.m14.into(),
            m.m21.into(), m.m22.into(), m.m23.into(), m.m24.into(),
            m.m31.into(), m.m32.into(), m.m33.into(), m.m34.into(),
            m.m41.into(), m.m42.into(), m.m43.into(), m.m44.into(),
        )
    }
}

/// A generic transform origin.
#[derive(
    Animate,
    Clone,
    ComputeSquaredDistance,
    Copy,
    Debug,
    MallocSizeOf,
    PartialEq,
    SpecifiedValueInfo,
    ToAnimatedZero,
    ToComputedValue,
    ToCss,
    ToResolvedValue,
    ToShmem,
)]
#[repr(C)]
pub struct GenericTransformOrigin<H, V, Depth> {
    /// The horizontal origin.
    pub horizontal: H,
    /// The vertical origin.
    pub vertical: V,
    /// The depth.
    pub depth: Depth,
}

pub use self::GenericTransformOrigin as TransformOrigin;

impl<H, V, D> TransformOrigin<H, V, D> {
    /// Returns a new transform origin.
    pub fn new(horizontal: H, vertical: V, depth: D) -> Self {
        Self {
            horizontal,
            vertical,
            depth,
        }
    }
}

fn is_same<N: PartialEq>(x: &N, y: &N) -> bool {
    x == y
}

/// A value for the `perspective()` transform function, which is either a
/// non-negative `<length>` or `none`.
#[derive(
    Clone,
    Debug,
    Deserialize,
    MallocSizeOf,
    PartialEq,
    Serialize,
    SpecifiedValueInfo,
    ToComputedValue,
    ToCss,
    ToResolvedValue,
    ToShmem,
)]
#[repr(C, u8)]
pub enum GenericPerspectiveFunction<L> {
    /// `none`
    None,
    /// A `<length>`.
    Length(L),
}

impl<L> GenericPerspectiveFunction<L> {
    /// Returns `f32::INFINITY` or the result of a function on the length value.
    pub fn infinity_or(&self, f: impl FnOnce(&L) -> f32) -> f32 {
        match *self {
            Self::None => f32::INFINITY,
            Self::Length(ref l) => f(l),
        }
    }
}

pub use self::GenericPerspectiveFunction as PerspectiveFunction;

#[derive(
    Clone,
    Debug,
    Deserialize,
    MallocSizeOf,
    PartialEq,
    Serialize,
    SpecifiedValueInfo,
    ToComputedValue,
    ToCss,
    ToResolvedValue,
    ToShmem,
)]
#[repr(C, u8)]
/// A single operation in the list of a `transform` value
pub enum GenericTransformOperation<Angle, Number, Length, Integer, LengthPercentage>
where
    Angle: Zero,
    LengthPercentage: Zero + ZeroNoPercent,
    Number: PartialEq,
{
    /// Represents a 2D 2x3 matrix.
    Matrix(GenericMatrix<Number>),
    /// Represents a 3D 4x4 matrix.
    Matrix3D(GenericMatrix3D<Number>),
    /// A 2D skew.
    ///
    /// If the second angle is not provided it is assumed zero.
    ///
    /// Syntax can be skew(angle) or skew(angle, angle)
    #[css(comma, function)]
    Skew(Angle, #[css(skip_if = "Zero::is_zero")] Angle),
    /// skewX(angle)
    #[css(function = "skewX")]
    SkewX(Angle),
    /// skewY(angle)
    #[css(function = "skewY")]
    SkewY(Angle),
    /// translate(x, y) or translate(x)
    #[css(comma, function)]
    Translate(
        LengthPercentage,
        #[css(skip_if = "ZeroNoPercent::is_zero_no_percent")] LengthPercentage,
    ),
    /// translateX(x)
    #[css(function = "translateX")]
    TranslateX(LengthPercentage),
    /// translateY(y)
    #[css(function = "translateY")]
    TranslateY(LengthPercentage),
    /// translateZ(z)
    #[css(function = "translateZ")]
    TranslateZ(Length),
    /// translate3d(x, y, z)
    #[css(comma, function = "translate3d")]
    Translate3D(LengthPercentage, LengthPercentage, Length),
    /// A 2D scaling factor.
    ///
    /// Syntax can be scale(factor) or scale(factor, factor)
    #[css(comma, function)]
    Scale(Number, #[css(contextual_skip_if = "is_same")] Number),
    /// scaleX(factor)
    #[css(function = "scaleX")]
    ScaleX(Number),
    /// scaleY(factor)
    #[css(function = "scaleY")]
    ScaleY(Number),
    /// scaleZ(factor)
    #[css(function = "scaleZ")]
    ScaleZ(Number),
    /// scale3D(factorX, factorY, factorZ)
    #[css(comma, function = "scale3d")]
    Scale3D(Number, Number, Number),
    /// Describes a 2D Rotation.
    ///
    /// In a 3D scene `rotate(angle)` is equivalent to `rotateZ(angle)`.
    #[css(function)]
    Rotate(Angle),
    /// Rotation in 3D space around the x-axis.
    #[css(function = "rotateX")]
    RotateX(Angle),
    /// Rotation in 3D space around the y-axis.
    #[css(function = "rotateY")]
    RotateY(Angle),
    /// Rotation in 3D space around the z-axis.
    #[css(function = "rotateZ")]
    RotateZ(Angle),
    /// Rotation in 3D space.
    ///
    /// Generalization of rotateX, rotateY and rotateZ.
    #[css(comma, function = "rotate3d")]
    Rotate3D(Number, Number, Number, Angle),
    /// Specifies a perspective projection matrix.
    ///
    /// Part of CSS Transform Module Level 2 and defined at
    /// [§ 13.1. 3D Transform Function](https://drafts.csswg.org/css-transforms-2/#funcdef-perspective).
    ///
    /// The value must be greater than or equal to zero.
    #[css(function)]
    Perspective(GenericPerspectiveFunction<Length>),
    /// A intermediate type for interpolation of mismatched transform lists.
    #[allow(missing_docs)]
    #[css(comma, function = "interpolatematrix")]
    InterpolateMatrix {
        from_list: GenericTransform<
            GenericTransformOperation<Angle, Number, Length, Integer, LengthPercentage>,
        >,
        to_list: GenericTransform<
            GenericTransformOperation<Angle, Number, Length, Integer, LengthPercentage>,
        >,
        progress: computed::Percentage,
    },
    /// A intermediate type for accumulation of mismatched transform lists.
    #[allow(missing_docs)]
    #[css(comma, function = "accumulatematrix")]
    AccumulateMatrix {
        from_list: GenericTransform<
            GenericTransformOperation<Angle, Number, Length, Integer, LengthPercentage>,
        >,
        to_list: GenericTransform<
            GenericTransformOperation<Angle, Number, Length, Integer, LengthPercentage>,
        >,
        count: Integer,
    },
}

pub use self::GenericTransformOperation as TransformOperation;

#[derive(
    Clone,
    Debug,
    Deserialize,
    MallocSizeOf,
    PartialEq,
    Serialize,
    SpecifiedValueInfo,
    ToComputedValue,
    ToCss,
    ToResolvedValue,
    ToShmem,
)]
#[repr(C)]
/// A value of the `transform` property
pub struct GenericTransform<T>(#[css(if_empty = "none", iterable)] pub crate::OwnedSlice<T>);

pub use self::GenericTransform as Transform;

impl<Angle, Number, Length, Integer, LengthPercentage>
    TransformOperation<Angle, Number, Length, Integer, LengthPercentage>
where
    Angle: Zero,
    LengthPercentage: Zero + ZeroNoPercent,
    Number: PartialEq,
{
    /// Check if it is any rotate function.
    pub fn is_rotate(&self) -> bool {
        use self::TransformOperation::*;
        matches!(
            *self,
            Rotate(..) | Rotate3D(..) | RotateX(..) | RotateY(..) | RotateZ(..)
        )
    }

    /// Check if it is any translate function
    pub fn is_translate(&self) -> bool {
        use self::TransformOperation::*;
        match *self {
            Translate(..) | Translate3D(..) | TranslateX(..) | TranslateY(..) | TranslateZ(..) => {
                true
            },
            _ => false,
        }
    }

    /// Check if it is any scale function
    pub fn is_scale(&self) -> bool {
        use self::TransformOperation::*;
        match *self {
            Scale(..) | Scale3D(..) | ScaleX(..) | ScaleY(..) | ScaleZ(..) => true,
            _ => false,
        }
    }
}

/// Convert a length type into the absolute lengths.
pub trait ToAbsoluteLength {
    /// Returns the absolute length as pixel value.
    fn to_pixel_length(&self, containing_len: Option<ComputedLength>) -> Result<CSSFloat, ()>;
}

impl ToAbsoluteLength for SpecifiedLength {
    // This returns Err(()) if there is any relative length or percentage. We use this when
    // parsing a transform list of DOMMatrix because we want to return a DOM Exception
    // if there is relative length.
    #[inline]
    fn to_pixel_length(&self, _containing_len: Option<ComputedLength>) -> Result<CSSFloat, ()> {
        match *self {
            SpecifiedLength::NoCalc(len) => len.to_computed_pixel_length_without_context(),
            SpecifiedLength::Calc(ref calc) => calc.to_computed_pixel_length_without_context(),
        }
    }
}

impl ToAbsoluteLength for SpecifiedLengthPercentage {
    // This returns Err(()) if there is any relative length or percentage. We use this when
    // parsing a transform list of DOMMatrix because we want to return a DOM Exception
    // if there is relative length.
    #[inline]
    fn to_pixel_length(&self, _containing_len: Option<ComputedLength>) -> Result<CSSFloat, ()> {
        use self::SpecifiedLengthPercentage::*;
        match *self {
            Length(len) => len.to_computed_pixel_length_without_context(),
            Calc(ref calc) => calc.to_computed_pixel_length_without_context(),
            Percentage(..) => Err(()),
        }
    }
}

impl ToAbsoluteLength for ComputedLength {
    #[inline]
    fn to_pixel_length(&self, _containing_len: Option<ComputedLength>) -> Result<CSSFloat, ()> {
        Ok(self.px())
    }
}

impl ToAbsoluteLength for ComputedLengthPercentage {
    #[inline]
    fn to_pixel_length(&self, containing_len: Option<ComputedLength>) -> Result<CSSFloat, ()> {
        Ok(self
            .maybe_percentage_relative_to(containing_len)
            .ok_or(())?
            .px())
    }
}

/// Support the conversion to a 3d matrix.
pub trait ToMatrix {
    /// Check if it is a 3d transform function.
    fn is_3d(&self) -> bool;

    /// Return the equivalent 3d matrix.
    fn to_3d_matrix(
        &self,
        reference_box: Option<&Rect<ComputedLength>>,
    ) -> Result<Transform3D<f64>, ()>;
}

/// A little helper to deal with both specified and computed angles.
pub trait ToRadians {
    /// Return the radians value as a 64-bit floating point value.
    fn radians64(&self) -> f64;
}

impl ToRadians for computed::angle::Angle {
    #[inline]
    fn radians64(&self) -> f64 {
        computed::angle::Angle::radians64(self)
    }
}

impl ToRadians for SpecifiedAngle {
    #[inline]
    fn radians64(&self) -> f64 {
        computed::angle::Angle::from_degrees(self.degrees()).radians64()
    }
}

impl<Angle, Number, Length, Integer, LoP> ToMatrix
    for TransformOperation<Angle, Number, Length, Integer, LoP>
where
    Angle: Zero + ToRadians + Copy,
    Number: PartialEq + Copy + Into<f32> + Into<f64>,
    Length: ToAbsoluteLength,
    LoP: Zero + ToAbsoluteLength + ZeroNoPercent,
{
    #[inline]
    fn is_3d(&self) -> bool {
        use self::TransformOperation::*;
        match *self {
            Translate3D(..) | TranslateZ(..) | Rotate3D(..) | RotateX(..) | RotateY(..) |
            RotateZ(..) | Scale3D(..) | ScaleZ(..) | Perspective(..) | Matrix3D(..) => true,
            _ => false,
        }
    }

    /// If |reference_box| is None, we will drop the percent part from translate because
    /// we cannot resolve it without the layout info, for computed TransformOperation.
    /// However, for specified TransformOperation, we will return Err(()) if there is any relative
    /// lengths because the only caller, DOMMatrix, doesn't accept relative lengths.
    #[inline]
    fn to_3d_matrix(
        &self,
        reference_box: Option<&Rect<ComputedLength>>,
    ) -> Result<Transform3D<f64>, ()> {
        use self::TransformOperation::*;

        let reference_width = reference_box.map(|v| v.size.width);
        let reference_height = reference_box.map(|v| v.size.height);
        let matrix = match *self {
            Rotate3D(ax, ay, az, theta) => {
                let theta = theta.radians64();
                let (ax, ay, az, theta) =
                    get_normalized_vector_and_angle(ax.into(), ay.into(), az.into(), theta);
                Transform3D::rotation(
                    ax as f64,
                    ay as f64,
                    az as f64,
                    euclid::Angle::radians(theta),
                )
            },
            RotateX(theta) => {
                let theta = euclid::Angle::radians(theta.radians64());
                Transform3D::rotation(1., 0., 0., theta)
            },
            RotateY(theta) => {
                let theta = euclid::Angle::radians(theta.radians64());
                Transform3D::rotation(0., 1., 0., theta)
            },
            RotateZ(theta) | Rotate(theta) => {
                let theta = euclid::Angle::radians(theta.radians64());
                Transform3D::rotation(0., 0., 1., theta)
            },
            Perspective(ref p) => {
                let px = match p {
                    PerspectiveFunction::None => f32::INFINITY,
                    PerspectiveFunction::Length(ref p) => p.to_pixel_length(None)?,
                };
                create_perspective_matrix(px).cast()
            },
            Scale3D(sx, sy, sz) => Transform3D::scale(sx.into(), sy.into(), sz.into()),
            Scale(sx, sy) => Transform3D::scale(sx.into(), sy.into(), 1.),
            ScaleX(s) => Transform3D::scale(s.into(), 1., 1.),
            ScaleY(s) => Transform3D::scale(1., s.into(), 1.),
            ScaleZ(s) => Transform3D::scale(1., 1., s.into()),
            Translate3D(ref tx, ref ty, ref tz) => {
                let tx = tx.to_pixel_length(reference_width)? as f64;
                let ty = ty.to_pixel_length(reference_height)? as f64;
                Transform3D::translation(tx, ty, tz.to_pixel_length(None)? as f64)
            },
            Translate(ref tx, ref ty) => {
                let tx = tx.to_pixel_length(reference_width)? as f64;
                let ty = ty.to_pixel_length(reference_height)? as f64;
                Transform3D::translation(tx, ty, 0.)
            },
            TranslateX(ref t) => {
                let t = t.to_pixel_length(reference_width)? as f64;
                Transform3D::translation(t, 0., 0.)
            },
            TranslateY(ref t) => {
                let t = t.to_pixel_length(reference_height)? as f64;
                Transform3D::translation(0., t, 0.)
            },
            TranslateZ(ref z) => Transform3D::translation(0., 0., z.to_pixel_length(None)? as f64),
            Skew(theta_x, theta_y) => Transform3D::skew(
                euclid::Angle::radians(theta_x.radians64()),
                euclid::Angle::radians(theta_y.radians64()),
            ),
            SkewX(theta) => Transform3D::skew(
                euclid::Angle::radians(theta.radians64()),
                euclid::Angle::radians(0.),
            ),
            SkewY(theta) => Transform3D::skew(
                euclid::Angle::radians(0.),
                euclid::Angle::radians(theta.radians64()),
            ),
            Matrix3D(m) => m.into(),
            Matrix(m) => m.into(),
            InterpolateMatrix { .. } | AccumulateMatrix { .. } => {
                // TODO: Convert InterpolateMatrix/AccumulateMatrix into a valid Transform3D by
                // the reference box and do interpolation on these two Transform3D matrices.
                // Both Gecko and Servo don't support this for computing distance, and Servo
                // doesn't support animations on InterpolateMatrix/AccumulateMatrix, so
                // return an identity matrix.
                // Note: DOMMatrix doesn't go into this arm.
                Transform3D::identity()
            },
        };
        Ok(matrix)
    }
}

impl<T> Transform<T> {
    /// `none`
    pub fn none() -> Self {
        Transform(Default::default())
    }
}

impl<T: ToMatrix> Transform<T> {
    /// Return the equivalent 3d matrix of this transform list.
    ///
    /// We return a pair: the first one is the transform matrix, and the second one
    /// indicates if there is any 3d transform function in this transform list.
    #[cfg_attr(rustfmt, rustfmt_skip)]
    pub fn to_transform_3d_matrix(
        &self,
        reference_box: Option<&Rect<ComputedLength>>
    ) -> Result<(Transform3D<CSSFloat>, bool), ()> {
        Self::components_to_transform_3d_matrix(&self.0, reference_box)
    }

    /// Converts a series of components to a 3d matrix.
    #[cfg_attr(rustfmt, rustfmt_skip)]
    pub fn components_to_transform_3d_matrix(
        ops: &[T],
        reference_box: Option<&Rect<ComputedLength>>,
    ) -> Result<(Transform3D<CSSFloat>, bool), ()> {
        let cast_3d_transform = |m: Transform3D<f64>| -> Transform3D<CSSFloat> {
            use std::{f32, f64};
            let cast = |v: f64| v.min(f32::MAX as f64).max(f32::MIN as f64) as f32;
            Transform3D::new(
                cast(m.m11), cast(m.m12), cast(m.m13), cast(m.m14),
                cast(m.m21), cast(m.m22), cast(m.m23), cast(m.m24),
                cast(m.m31), cast(m.m32), cast(m.m33), cast(m.m34),
                cast(m.m41), cast(m.m42), cast(m.m43), cast(m.m44),
            )
        };

        let (m, is_3d) = Self::components_to_transform_3d_matrix_f64(ops, reference_box)?;
        Ok((cast_3d_transform(m), is_3d))
    }

    /// Same as Transform::to_transform_3d_matrix but a f64 version.
    pub fn to_transform_3d_matrix_f64(
        &self,
        reference_box: Option<&Rect<ComputedLength>>
    ) -> Result<(Transform3D<f64>, bool), ()> {
        Self::components_to_transform_3d_matrix_f64(&self.0, reference_box)
    }

    fn components_to_transform_3d_matrix_f64(
        ops: &[T],
        reference_box: Option<&Rect<ComputedLength>>,
    ) -> Result<(Transform3D<f64>, bool), ()> {
        // We intentionally use Transform3D<f64> during computation to avoid
        // error propagation because using f32 to compute triangle functions
        // (e.g. in rotation()) is not accurate enough. In Gecko, we also use
        // "double" to compute the triangle functions. Therefore, let's use
        // Transform3D<f64> during matrix computation and cast it into f32 in
        // the end.
        let mut transform = Transform3D::<f64>::identity();
        let mut contain_3d = false;

        for operation in ops {
            let matrix = operation.to_3d_matrix(reference_box)?;
            contain_3d = contain_3d || operation.is_3d();
            transform = matrix.then(&transform);
        }

        Ok((transform, contain_3d))
    }
}

/// Return the transform matrix from a perspective length.
#[inline]
pub fn create_perspective_matrix(d: CSSFloat) -> Transform3D<CSSFloat> {
    if d.is_finite() {
        Transform3D::perspective(d.max(1.))
    } else {
        Transform3D::identity()
    }
}

/// Return the normalized direction vector and its angle for Rotate3D.
pub fn get_normalized_vector_and_angle<T: Zero>(
    x: CSSFloat,
    y: CSSFloat,
    z: CSSFloat,
    angle: T,
) -> (CSSFloat, CSSFloat, CSSFloat, T) {
    use crate::values::computed::transform::DirectionVector;
    use euclid::approxeq::ApproxEq;
    let vector = DirectionVector::new(x, y, z);
    if vector.square_length().approx_eq(&f32::zero()) {
        // https://www.w3.org/TR/css-transforms-1/#funcdef-rotate3d
        // A direction vector that cannot be normalized, such as [0, 0, 0], will cause the
        // rotation to not be applied, so we use identity matrix (i.e. rotate3d(0, 0, 1, 0)).
        (0., 0., 1., T::zero())
    } else {
        let vector = vector.robust_normalize();
        (vector.x, vector.y, vector.z, angle)
    }
}

#[derive(
    Clone,
    Copy,
    Debug,
    Deserialize,
    MallocSizeOf,
    PartialEq,
    Serialize,
    SpecifiedValueInfo,
    ToAnimatedZero,
    ToComputedValue,
    ToResolvedValue,
    ToShmem,
)]
#[repr(C, u8)]
/// A value of the `Rotate` property
///
/// <https://drafts.csswg.org/css-transforms-2/#individual-transforms>
pub enum GenericRotate<Number, Angle> {
    /// 'none'
    None,
    /// '<angle>'
    Rotate(Angle),
    /// '<number>{3} <angle>'
    Rotate3D(Number, Number, Number, Angle),
}

pub use self::GenericRotate as Rotate;

/// A trait to check if the current 3D vector is parallel to the DirectionVector.
/// This is especially for serialization on Rotate.
pub trait IsParallelTo {
    /// Returns true if this is parallel to the vector.
    fn is_parallel_to(&self, vector: &computed::transform::DirectionVector) -> bool;
}

impl<Number, Angle> ToCss for Rotate<Number, Angle>
where
    Number: Copy + ToCss + Zero,
    Angle: ToCss,
    (Number, Number, Number): IsParallelTo,
{
    fn to_css<W>(&self, dest: &mut CssWriter<W>) -> fmt::Result
    where
        W: fmt::Write,
    {
        use crate::values::computed::transform::DirectionVector;
        match *self {
            Rotate::None => dest.write_str("none"),
            Rotate::Rotate(ref angle) => angle.to_css(dest),
            Rotate::Rotate3D(x, y, z, ref angle) => {
                // If the axis is parallel with the x or y axes, it must serialize as the
                // appropriate keyword. If a rotation about the z axis (that is, in 2D) is
                // specified, the property must serialize as just an <angle>
                //
                // https://drafts.csswg.org/css-transforms-2/#individual-transform-serialization
                let v = (x, y, z);
                let axis = if x.is_zero() && y.is_zero() && z.is_zero() {
                    // The zero length vector is parallel to every other vector, so
                    // is_parallel_to() returns true for it. However, it is definitely different
                    // from x axis, y axis, or z axis, and it's meaningless to perform a rotation
                    // using that direction vector. So we *have* to serialize it using that same
                    // vector - we can't simplify to some theoretically parallel axis-aligned
                    // vector.
                    None
                } else if v.is_parallel_to(&DirectionVector::new(1., 0., 0.)) {
                    Some("x ")
                } else if v.is_parallel_to(&DirectionVector::new(0., 1., 0.)) {
                    Some("y ")
                } else if v.is_parallel_to(&DirectionVector::new(0., 0., 1.)) {
                    // When we're parallel to the z-axis, we can just serialize the angle.
                    return angle.to_css(dest);
                } else {
                    None
                };
                match axis {
                    Some(a) => dest.write_str(a)?,
                    None => {
                        x.to_css(dest)?;
                        dest.write_char(' ')?;
                        y.to_css(dest)?;
                        dest.write_char(' ')?;
                        z.to_css(dest)?;
                        dest.write_char(' ')?;
                    },
                }
                angle.to_css(dest)
            },
        }
    }
}

#[derive(
    Clone,
    Copy,
    Debug,
    Deserialize,
    MallocSizeOf,
    PartialEq,
    Serialize,
    SpecifiedValueInfo,
    ToAnimatedZero,
    ToComputedValue,
    ToResolvedValue,
    ToShmem,
)]
#[repr(C, u8)]
/// A value of the `Scale` property
///
/// <https://drafts.csswg.org/css-transforms-2/#individual-transforms>
pub enum GenericScale<Number> {
    /// 'none'
    None,
    /// '<number>{1,3}'
    Scale(Number, Number, Number),
}

pub use self::GenericScale as Scale;

impl<Number> ToCss for Scale<Number>
where
    Number: ToCss + PartialEq + Copy,
    f32: From<Number>,
{
    fn to_css<W>(&self, dest: &mut CssWriter<W>) -> fmt::Result
    where
        W: fmt::Write,
        f32: From<Number>,
    {
        match *self {
            Scale::None => dest.write_str("none"),
            Scale::Scale(ref x, ref y, ref z) => {
                x.to_css(dest)?;

                let is_3d = f32::from(*z) != 1.0;
                if is_3d || x != y {
                    dest.write_char(' ')?;
                    y.to_css(dest)?;
                }

                if is_3d {
                    dest.write_char(' ')?;
                    z.to_css(dest)?;
                }
                Ok(())
            },
        }
    }
}

#[inline]
fn y_axis_and_z_axis_are_zero<LengthPercentage: Zero + ZeroNoPercent, Length: Zero>(
    _: &LengthPercentage,
    y: &LengthPercentage,
    z: &Length,
) -> bool {
    y.is_zero_no_percent() && z.is_zero()
}

#[derive(
    Clone,
    Debug,
    Deserialize,
    MallocSizeOf,
    PartialEq,
    Serialize,
    SpecifiedValueInfo,
    ToAnimatedZero,
    ToComputedValue,
    ToCss,
    ToResolvedValue,
    ToShmem,
)]
#[repr(C, u8)]
/// A value of the `translate` property
///
/// https://drafts.csswg.org/css-transforms-2/#individual-transform-serialization:
///
/// If a 2d translation is specified, the property must serialize with only one
/// or two values (per usual, if the second value is 0px, the default, it must
/// be omitted when serializing; however if 0% is the second value, it is included).
///
/// If a 3d translation is specified and the value can be expressed as 2d, we treat as 2d and
/// serialize accoringly. Otherwise, we serialize all three values.
/// https://github.com/w3c/csswg-drafts/issues/3305
///
/// <https://drafts.csswg.org/css-transforms-2/#individual-transforms>
pub enum GenericTranslate<LengthPercentage, Length>
where
    LengthPercentage: Zero + ZeroNoPercent,
    Length: Zero,
{
    /// 'none'
    None,
    /// <length-percentage> [ <length-percentage> <length>? ]?
    Translate(
        LengthPercentage,
        #[css(contextual_skip_if = "y_axis_and_z_axis_are_zero")] LengthPercentage,
        #[css(skip_if = "Zero::is_zero")] Length,
    ),
}

pub use self::GenericTranslate as Translate;

#[allow(missing_docs)]
#[derive(
    Clone,
    Copy,
    Debug,
    MallocSizeOf,
    Parse,
    PartialEq,
    SpecifiedValueInfo,
    ToComputedValue,
    ToCss,
    ToResolvedValue,
    ToShmem,
)]
#[repr(u8)]
pub enum TransformStyle {
    Flat,
    #[css(keyword = "preserve-3d")]
    Preserve3d,
}