calendrical_calculations/iso.rs
1// This file is part of ICU4X.
2//
3// The contents of this file implement algorithms from Calendrical Calculations
4// by Reingold & Dershowitz, Cambridge University Press, 4th edition (2018),
5// which have been released as Lisp code at <https://github.com/EdReingold/calendar-code2/>
6// under the Apache-2.0 license. Accordingly, this file is released under
7// the Apache License, Version 2.0 which can be found at the calendrical_calculations
8// package root or at http://www.apache.org/licenses/LICENSE-2.0.
9
10use crate::helpers::{i64_to_i32, I32CastError};
11use crate::rata_die::RataDie;
12
13// The Gregorian epoch is equivalent to first day in fixed day measurement
14const EPOCH: RataDie = RataDie::new(1);
15
16/// Whether or not `year` is a leap year
17pub fn is_leap_year(year: i32) -> bool {
18 year % 4 == 0 && (year % 400 == 0 || year % 100 != 0)
19}
20
21// Fixed is day count representation of calendars starting from Jan 1st of year 1.
22// The fixed calculations algorithms are from the Calendrical Calculations book.
23//
24/// Lisp code reference: <https://github.com/EdReingold/calendar-code2/blob/1ee51ecfaae6f856b0d7de3e36e9042100b4f424/calendar.l#L1167-L1189>
25pub fn fixed_from_iso(year: i32, month: u8, day: u8) -> RataDie {
26 let prev_year = (year as i64) - 1;
27 // Calculate days per year
28 let mut fixed: i64 = (EPOCH.to_i64_date() - 1) + 365 * prev_year;
29 // Calculate leap year offset
30 let offset = prev_year.div_euclid(4) - prev_year.div_euclid(100) + prev_year.div_euclid(400);
31 // Adjust for leap year logic
32 fixed += offset;
33 // Days of current year
34 fixed += (367 * (month as i64) - 362).div_euclid(12);
35 // Leap year adjustment for the current year
36 fixed += if month <= 2 {
37 0
38 } else if is_leap_year(year) {
39 -1
40 } else {
41 -2
42 };
43 // Days passed in current month
44 fixed += day as i64;
45 RataDie::new(fixed)
46}
47
48/// Lisp code reference: <https://github.com/EdReingold/calendar-code2/blob/1ee51ecfaae6f856b0d7de3e36e9042100b4f424/calendar.l#L1191-L1217>
49pub(crate) fn iso_year_from_fixed(date: RataDie) -> i64 {
50 // Shouldn't overflow because it's not possbile to construct extreme values of RataDie
51 let date = date - EPOCH;
52
53 // 400 year cycles have 146097 days
54 let (n_400, date) = (date.div_euclid(146097), date.rem_euclid(146097));
55
56 // 100 year cycles have 36524 days
57 let (n_100, date) = (date.div_euclid(36524), date.rem_euclid(36524));
58
59 // 4 year cycles have 1461 days
60 let (n_4, date) = (date.div_euclid(1461), date.rem_euclid(1461));
61
62 let n_1 = date.div_euclid(365);
63
64 let year = 400 * n_400 + 100 * n_100 + 4 * n_4 + n_1;
65
66 if n_100 == 4 || n_1 == 4 {
67 year
68 } else {
69 year + 1
70 }
71}
72
73fn iso_new_year(year: i32) -> RataDie {
74 fixed_from_iso(year, 1, 1)
75}
76
77/// Lisp code reference: <https://github.com/EdReingold/calendar-code2/blob/1ee51ecfaae6f856b0d7de3e36e9042100b4f424/calendar.l#L1525-L1540>
78pub fn iso_from_fixed(date: RataDie) -> Result<(i32, u8, u8), I32CastError> {
79 let year = iso_year_from_fixed(date);
80 let year = i64_to_i32(year)?;
81 // Calculates the prior days of the adjusted year, then applies a correction based on leap year conditions for the correct ISO date conversion.
82 let prior_days = date - iso_new_year(year);
83 let correction = if date < fixed_from_iso(year, 3, 1) {
84 0
85 } else if is_leap_year(year) {
86 1
87 } else {
88 2
89 };
90 let month = (12 * (prior_days + correction) + 373).div_euclid(367) as u8; // in 1..12 < u8::MAX
91 let day = (date - fixed_from_iso(year, month, 1) + 1) as u8; // <= days_in_month < u8::MAX
92 Ok((year, month, day))
93}