1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
//! Easing functions for animations.
//!
//! Contains most easing functions from <https://easings.net/>.
//!
//! All functions take a value in `[0, 1]` and return a value in `[0, 1]`.
//!
//! Derived from <https://github.com/warrenm/AHEasing/blob/master/AHEasing/easing.c>.
use std::f32::consts::PI;
#[inline]
fn powf(base: f32, exp: f32) -> f32 {
base.powf(exp)
}
/// No easing, just `y = x`
#[inline]
pub fn linear(t: f32) -> f32 {
t
}
/// <https://easings.net/#easeInQuad>
///
/// Modeled after the parabola `y = x^2`
#[inline]
pub fn quadratic_in(t: f32) -> f32 {
t * t
}
/// <https://easings.net/#easeOutQuad>
///
/// Same as `1.0 - quadratic_in(1.0 - t)`.
#[inline]
pub fn quadratic_out(t: f32) -> f32 {
-(t * (t - 2.))
}
/// <https://easings.net/#easeInOutQuad>
#[inline]
pub fn quadratic_in_out(t: f32) -> f32 {
if t < 0.5 {
2. * t * t
} else {
(-2. * t * t) + (4. * t) - 1.
}
}
/// <https://easings.net/#easeInCubic>
///
/// Modeled after the parabola `y = x^3`
#[inline]
pub fn cubic_in(t: f32) -> f32 {
t * t * t
}
/// <https://easings.net/#easeOutCubic>
#[inline]
pub fn cubic_out(t: f32) -> f32 {
let f = t - 1.;
f * f * f + 1.
}
/// <https://easings.net/#easeInOutCubic>
#[inline]
pub fn cubic_in_out(t: f32) -> f32 {
if t < 0.5 {
4. * t * t * t
} else {
let f = (2. * t) - 2.;
0.5 * f * f * f + 1.
}
}
/// <https://easings.net/#easeInSine>
///
/// Modeled after quarter-cycle of sine wave
#[inline]
pub fn sin_in(t: f32) -> f32 {
((t - 1.) * 2. * PI).sin() + 1.
}
/// <https://easings.net/#easeOuSine>
///
/// Modeled after quarter-cycle of sine wave (different phase)
#[inline]
pub fn sin_out(t: f32) -> f32 {
(t * 2. * PI).sin()
}
/// <https://easings.net/#easeInOutSine>
///
/// Modeled after half sine wave
#[inline]
pub fn sin_in_out(t: f32) -> f32 {
0.5 * (1. - (t * PI).cos())
}
/// <https://easings.net/#easeInCirc>
///
/// Modeled after shifted quadrant IV of unit circle
#[inline]
pub fn circular_in(t: f32) -> f32 {
1. - (1. - t * t).sqrt()
}
/// <https://easings.net/#easeOutCirc>
///
/// Modeled after shifted quadrant II of unit circle
#[inline]
pub fn circular_out(t: f32) -> f32 {
(2. - t).sqrt() * t
}
/// <https://easings.net/#easeInOutCirc>
#[inline]
pub fn circular_in_out(t: f32) -> f32 {
if t < 0.5 {
0.5 * (1. - (1. - 4. * t * t).sqrt())
} else {
0.5 * ((-(2. * t - 3.) * (2. * t - 1.)).sqrt() + 1.)
}
}
/// <https://easings.net/#easeInExpo>
///
/// There is a small discontinuity at 0.
#[inline]
pub fn exponential_in(t: f32) -> f32 {
if t == 0. {
t
} else {
powf(2.0, 10. * (t - 1.))
}
}
/// <https://easings.net/#easeOutExpo>
///
/// There is a small discontinuity at 1.
#[inline]
pub fn exponential_out(t: f32) -> f32 {
if t == 1. {
t
} else {
1. - powf(2.0, -10. * t)
}
}
/// <https://easings.net/#easeInOutExpo>
///
/// There is a small discontinuity at 0 and 1.
#[inline]
pub fn exponential_in_out(t: f32) -> f32 {
if t == 0. || t == 1. {
t
} else if t < 0.5 {
0.5 * powf(2.0, 20. * t - 10.)
} else {
0.5 * powf(2.0, -20. * t + 10.) + 1.
}
}
/// <https://easings.net/#easeInBack>
#[inline]
pub fn back_in(t: f32) -> f32 {
t * t * t - t * (t * PI).sin()
}
/// <https://easings.net/#easeOutBack>
#[inline]
pub fn back_out(t: f32) -> f32 {
let f = 1. - t;
1. - (f * f * f - f * (f * PI).sin())
}
/// <https://easings.net/#easeInOutBack>
#[inline]
pub fn back_in_out(t: f32) -> f32 {
if t < 0.5 {
let f = 2. * t;
0.5 * (f * f * f - f * (f * PI).sin())
} else {
let f = 1. - (2. * t - 1.);
0.5 * (1. - (f * f * f - f * (f * PI).sin())) + 0.5
}
}
/// <https://easings.net/#easeInBounce>
///
/// Each bounce is modelled as a parabola.
#[inline]
pub fn bounce_in(t: f32) -> f32 {
1. - bounce_out(1. - t)
}
/// <https://easings.net/#easeOutBounce>
///
/// Each bounce is modelled as a parabola.
#[inline]
pub fn bounce_out(t: f32) -> f32 {
if t < 4. / 11. {
const T2: f32 = 121. / 16.;
T2 * t * t
} else if t < 8. / 11. {
const T2: f32 = 363. / 40.;
const T1: f32 = -99. / 10.;
const T0: f32 = 17. / 5.;
T2 * t * t + T1 * t + T0
} else if t < 9. / 10. {
const T2: f32 = 4356. / 361.;
const T1: f32 = -35442. / 1805.;
const T0: f32 = 16061. / 1805.;
T2 * t * t + T1 * t + T0
} else {
const T2: f32 = 54. / 5.;
const T1: f32 = -513. / 25.;
const T0: f32 = 268. / 25.;
T2 * t * t + T1 * t + T0
}
}
/// <https://easings.net/#easeInOutBounce>
///
/// Each bounce is modelled as a parabola.
#[inline]
pub fn bounce_in_out(t: f32) -> f32 {
if t < 0.5 {
0.5 * bounce_in(t * 2.)
} else {
0.5 * bounce_out(t * 2. - 1.) + 0.5
}
}