# Struct egui::Vec2

``````#[repr(C)]pub struct Vec2 {
pub x: f32,
pub y: f32,
}``````
Expand description

A vector has a direction and length. A `Vec2` is often used to represent a size.

emath represents positions using `crate::Pos2`.

Normally the units are points (logical pixels).

## Fields§

§`x: f32`

Rightwards. Width.

§`y: f32`

Downwards. Height.

## Implementations§

source§

### impl Vec2

source

source

source

source

source

source

source

source

source

source

#### pub const fn splat(v: f32) -> Vec2

Set both `x` and `y` to the same value.

source

#### pub fn to_pos2(self) -> Pos2

Treat this vector as a position. `v.to_pos2()` is equivalent to `Pos2::default() + v`.

source

#### pub fn normalized(self) -> Vec2

Safe normalize: returns zero if input is zero.

source

#### pub fn rot90(self) -> Vec2

Rotates the vector by 90°, i.e positive X to positive Y (clockwise in egui coordinates).

source

source

source

#### pub fn angle(self) -> f32

Measures the angle of the vector.

``````use std::f32::consts::TAU;

assert_eq!(Vec2::ZERO.angle(), 0.0);
assert_eq!(Vec2::angled(0.0).angle(), 0.0);
assert_eq!(Vec2::angled(1.0).angle(), 1.0);
assert_eq!(Vec2::X.angle(), 0.0);
assert_eq!(Vec2::Y.angle(), 0.25 * TAU);

assert_eq!(Vec2::RIGHT.angle(), 0.0);
assert_eq!(Vec2::DOWN.angle(), 0.25 * TAU);
assert_eq!(Vec2::UP.angle(), -0.25 * TAU);``````
source

#### pub fn angled(angle: f32) -> Vec2

Create a unit vector with the given CW angle (in radians).

• An angle of zero gives the unit X axis.
• An angle of 𝞃/4 = 90° gives the unit Y axis.
``````use std::f32::consts::TAU;

assert_eq!(Vec2::angled(0.0), Vec2::X);
assert!((Vec2::angled(0.25 * TAU) - Vec2::Y).length() < 1e-5);``````
source

source

source

source

source

#### pub fn is_finite(self) -> bool

True if all members are also finite.

source

#### pub fn any_nan(self) -> bool

True if any member is NaN.

source

source

source

#### pub fn dot(self, other: Vec2) -> f32

The dot-product of two vectors.

source

#### pub fn min_elem(self) -> f32

Returns the minimum of `self.x` and `self.y`.

source

#### pub fn max_elem(self) -> f32

Returns the maximum of `self.x` and `self.y`.

source

#### pub fn yx(self) -> Vec2

Swizzle the axes.

source

## Trait Implementations§

source§

§

#### type Output = Pos2

The resulting type after applying the `+` operator.
source§

#### fn add(self, rhs: Vec2) -> Pos2

Performs the `+` operation. Read more
source§

§

#### type Output = Vec2

The resulting type after applying the `+` operator.
source§

#### fn add(self, rhs: Vec2) -> Vec2

Performs the `+` operation. Read more
source§

source§

#### fn add_assign(&mut self, rhs: Vec2)

Performs the `+=` operation. Read more
source§

source§

#### fn add_assign(&mut self, rhs: Vec2)

Performs the `+=` operation. Read more
source§

### impl Clone for Vec2

source§

#### fn clone(&self) -> Vec2

Returns a copy of the value. Read more
1.0.0 · source§

#### fn clone_from(&mut self, source: &Self)

Performs copy-assignment from `source`. Read more
source§

### impl Debug for Vec2

source§

#### fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
source§

### impl Default for Vec2

source§

#### fn default() -> Vec2

Returns the “default value” for a type. Read more
source§

### impl Div<f32> for Vec2

§

#### type Output = Vec2

The resulting type after applying the `/` operator.
source§

#### fn div(self, factor: f32) -> Vec2

Performs the `/` operation. Read more
source§

### impl Div for Vec2

Element-wise division

§

#### type Output = Vec2

The resulting type after applying the `/` operator.
source§

#### fn div(self, rhs: Vec2) -> Vec2

Performs the `/` operation. Read more
source§

### impl DivAssign<f32> for Vec2

source§

#### fn div_assign(&mut self, rhs: f32)

Performs the `/=` operation. Read more
source§

### impl From<&[f32; 2]> for Vec2

source§

#### fn from(v: &[f32; 2]) -> Vec2

Converts to this type from the input type.
source§

### impl From<&(f32, f32)> for Vec2

source§

#### fn from(v: &(f32, f32)) -> Vec2

Converts to this type from the input type.
source§

### impl From<[f32; 2]> for Vec2

source§

#### fn from(v: [f32; 2]) -> Vec2

Converts to this type from the input type.
source§

### impl From<(f32, f32)> for Vec2

source§

#### fn from(v: (f32, f32)) -> Vec2

Converts to this type from the input type.
source§

### impl From<Vec2> for Margin

source§

#### fn from(v: Vec2) -> Self

Converts to this type from the input type.
source§

### impl From<Vec2> for SizeHint

source§

#### fn from(value: Vec2) -> Self

Converts to this type from the input type.
source§

### impl Index<usize> for Vec2

§

#### type Output = f32

The returned type after indexing.
source§

#### fn index(&self, index: usize) -> &f32

Performs the indexing (`container[index]`) operation. Read more
source§

### impl IndexMut<usize> for Vec2

source§

#### fn index_mut(&mut self, index: usize) -> &mut f32

Performs the mutable indexing (`container[index]`) operation. Read more
source§

### impl Mul<f32> for Vec2

§

#### type Output = Vec2

The resulting type after applying the `*` operator.
source§

#### fn mul(self, factor: f32) -> Vec2

Performs the `*` operation. Read more
source§

### impl Mul for Vec2

Element-wise multiplication

§

#### type Output = Vec2

The resulting type after applying the `*` operator.
source§

#### fn mul(self, vec: Vec2) -> Vec2

Performs the `*` operation. Read more
source§

### impl MulAssign<f32> for Vec2

source§

#### fn mul_assign(&mut self, rhs: f32)

Performs the `*=` operation. Read more
source§

### impl Neg for Vec2

§

#### type Output = Vec2

The resulting type after applying the `-` operator.
source§

#### fn neg(self) -> Vec2

Performs the unary `-` operation. Read more
source§

### impl NumExt for Vec2

source§

#### fn at_least(self, lower_limit: Vec2) -> Vec2

More readable version of `self.max(lower_limit)`
source§

#### fn at_most(self, upper_limit: Vec2) -> Vec2

More readable version of `self.min(upper_limit)`
source§

### impl PartialEq for Vec2

source§

#### fn eq(&self, other: &Vec2) -> bool

This method tests for `self` and `other` values to be equal, and is used by `==`.
1.0.0 · source§

#### fn ne(&self, other: &Rhs) -> bool

This method tests for `!=`. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

### impl Sub<Vec2> for Pos2

§

#### type Output = Pos2

The resulting type after applying the `-` operator.
source§

#### fn sub(self, rhs: Vec2) -> Pos2

Performs the `-` operation. Read more
source§

### impl Sub for Vec2

§

#### type Output = Vec2

The resulting type after applying the `-` operator.
source§

#### fn sub(self, rhs: Vec2) -> Vec2

Performs the `-` operation. Read more
source§

### impl SubAssign<Vec2> for Pos2

source§

#### fn sub_assign(&mut self, rhs: Vec2)

Performs the `-=` operation. Read more
source§

### impl SubAssign for Vec2

source§

#### fn sub_assign(&mut self, rhs: Vec2)

Performs the `-=` operation. Read more
source§

source§

source§

source§

source§

source§

§

§

§

§

§

§

## Blanket Implementations§

source§

### impl<T> Any for Twhere T: 'static + ?Sized,

source§

#### fn type_id(&self) -> TypeId

Gets the `TypeId` of `self`. Read more
source§

### impl<T> Borrow<T> for Twhere T: ?Sized,

source§

#### fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

### impl<T> BorrowMut<T> for Twhere T: ?Sized,

source§

#### fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

### impl<T> CheckedBitPattern for Twhere T: AnyBitPattern,

§

#### type Bits = T

`Self` must have the same layout as the specified `Bits` except for the possible invalid bit patterns being checked during `is_valid_bit_pattern`.
source§

#### fn is_valid_bit_pattern(_bits: &T) -> bool

If this function returns true, then it must be valid to reinterpret `bits` as `&Self`.
source§

### impl<T> From<T> for T

source§

#### fn from(t: T) -> T

Returns the argument unchanged.

source§

### impl<T, U> Into<U> for Twhere U: From<T>,

source§

#### fn into(self) -> U

Calls `U::from(self)`.

That is, this conversion is whatever the implementation of `From<T> for U` chooses to do.

source§

### impl<T> ToOwned for Twhere T: Clone,

§

#### type Owned = T

The resulting type after obtaining ownership.
source§

#### fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

#### fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

### impl<T, U> TryFrom<U> for Twhere U: Into<T>,

§

#### type Error = Infallible

The type returned in the event of a conversion error.
source§

#### fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

### impl<T, U> TryInto<U> for Twhere U: TryFrom<T>,

§

#### type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

#### fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

source§

source§