layout_2020::table

Type Alias TableSize

Source
pub type TableSize = Size2D<usize, UnknownUnit>;

Aliased Type§

struct TableSize {
    pub width: usize,
    pub height: usize,
}

Fields§

§width: usize

The extent of the element in the U units along the x axis (usually horizontal).

§height: usize

The extent of the element in the U units along the y axis (usually vertical).

Implementations

Source§

impl<T, U> Size2D<T, U>

Source

pub fn zero() -> Size2D<T, U>
where T: Zero,

The same as Zero::zero but available without importing trait.

Source

pub const fn new(width: T, height: T) -> Size2D<T, U>

Constructor taking scalar values.

Source

pub fn from_lengths(width: Length<T, U>, height: Length<T, U>) -> Size2D<T, U>

Constructor taking scalar strongly typed lengths.

Source

pub fn splat(v: T) -> Size2D<T, U>
where T: Clone,

Constructor setting all components to the same value.

Source

pub fn from_untyped(p: Size2D<T, UnknownUnit>) -> Size2D<T, U>

Tag a unitless value with units.

Source§

impl<T, U> Size2D<T, U>
where T: Copy,

Source

pub fn to_array(self) -> [T; 2]

Return this size as an array of two elements (width, then height).

Source

pub fn to_tuple(self) -> (T, T)

Return this size as a tuple of two elements (width, then height).

Source

pub fn to_vector(self) -> Vector2D<T, U>

Return this size as a vector with width and height.

Source

pub fn to_untyped(self) -> Size2D<T, UnknownUnit>

Drop the units, preserving only the numeric value.

Source

pub fn cast_unit<V>(self) -> Size2D<T, V>

Cast the unit

Source

pub fn round(self) -> Size2D<T, U>
where T: Round,

Rounds each component to the nearest integer value.

This behavior is preserved for negative values (unlike the basic cast).

enum Mm {}

assert_eq!(size2::<_, Mm>(-0.1, -0.8).round(), size2::<_, Mm>(0.0, -1.0))
Source

pub fn ceil(self) -> Size2D<T, U>
where T: Ceil,

Rounds each component to the smallest integer equal or greater than the original value.

This behavior is preserved for negative values (unlike the basic cast).

enum Mm {}

assert_eq!(size2::<_, Mm>(-0.1, -0.8).ceil(), size2::<_, Mm>(0.0, 0.0))
Source

pub fn floor(self) -> Size2D<T, U>
where T: Floor,

Rounds each component to the biggest integer equal or lower than the original value.

This behavior is preserved for negative values (unlike the basic cast).

enum Mm {}

assert_eq!(size2::<_, Mm>(-0.1, -0.8).floor(), size2::<_, Mm>(-1.0, -1.0))
Source

pub fn area(self) -> <T as Mul>::Output
where T: Mul,

Returns result of multiplication of both components

Source

pub fn lerp(self, other: Size2D<T, U>, t: T) -> Size2D<T, U>
where T: One + Sub<Output = T> + Mul<Output = T> + Add<Output = T>,

Linearly interpolate each component between this size and another size.

§Example
use euclid::size2;
use euclid::default::Size2D;

let from: Size2D<_> = size2(0.0, 10.0);
let to:  Size2D<_> = size2(8.0, -4.0);

assert_eq!(from.lerp(to, -1.0), size2(-8.0,  24.0));
assert_eq!(from.lerp(to,  0.0), size2( 0.0,  10.0));
assert_eq!(from.lerp(to,  0.5), size2( 4.0,   3.0));
assert_eq!(from.lerp(to,  1.0), size2( 8.0,  -4.0));
assert_eq!(from.lerp(to,  2.0), size2(16.0, -18.0));
Source§

impl<T, U> Size2D<T, U>
where T: NumCast + Copy,

Source

pub fn cast<NewT>(self) -> Size2D<NewT, U>
where NewT: NumCast,

Cast from one numeric representation to another, preserving the units.

When casting from floating point to integer coordinates, the decimals are truncated as one would expect from a simple cast, but this behavior does not always make sense geometrically. Consider using round(), ceil() or floor() before casting.

Source

pub fn try_cast<NewT>(self) -> Option<Size2D<NewT, U>>
where NewT: NumCast,

Fallible cast from one numeric representation to another, preserving the units.

When casting from floating point to integer coordinates, the decimals are truncated as one would expect from a simple cast, but this behavior does not always make sense geometrically. Consider using round(), ceil() or floor() before casting.

Source

pub fn to_f32(self) -> Size2D<f32, U>

Cast into an f32 size.

Source

pub fn to_f64(self) -> Size2D<f64, U>

Cast into an f64 size.

Source

pub fn to_usize(self) -> Size2D<usize, U>

Cast into an uint size, truncating decimals if any.

When casting from floating point sizes, it is worth considering whether to round(), ceil() or floor() before the cast in order to obtain the desired conversion behavior.

Source

pub fn to_u32(self) -> Size2D<u32, U>

Cast into an u32 size, truncating decimals if any.

When casting from floating point sizes, it is worth considering whether to round(), ceil() or floor() before the cast in order to obtain the desired conversion behavior.

Source

pub fn to_u64(self) -> Size2D<u64, U>

Cast into an u64 size, truncating decimals if any.

When casting from floating point sizes, it is worth considering whether to round(), ceil() or floor() before the cast in order to obtain the desired conversion behavior.

Source

pub fn to_i32(self) -> Size2D<i32, U>

Cast into an i32 size, truncating decimals if any.

When casting from floating point sizes, it is worth considering whether to round(), ceil() or floor() before the cast in order to obtain the desired conversion behavior.

Source

pub fn to_i64(self) -> Size2D<i64, U>

Cast into an i64 size, truncating decimals if any.

When casting from floating point sizes, it is worth considering whether to round(), ceil() or floor() before the cast in order to obtain the desired conversion behavior.

Source§

impl<T, U> Size2D<T, U>
where T: Float,

Source

pub fn is_finite(self) -> bool

Returns true if all members are finite.

Source§

impl<T, U> Size2D<T, U>
where T: Signed,

Source

pub fn abs(self) -> Size2D<T, U>

Computes the absolute value of each component.

For f32 and f64, NaN will be returned for component if the component is NaN.

For signed integers, ::MIN will be returned for component if the component is ::MIN.

Source

pub fn is_positive(self) -> bool

Returns true if both components is positive and false any component is zero or negative.

Source§

impl<T, U> Size2D<T, U>
where T: PartialOrd,

Source

pub fn min(self, other: Size2D<T, U>) -> Size2D<T, U>

Returns the size each component of which are minimum of this size and another.

Source

pub fn max(self, other: Size2D<T, U>) -> Size2D<T, U>

Returns the size each component of which are maximum of this size and another.

Source

pub fn clamp(self, start: Size2D<T, U>, end: Size2D<T, U>) -> Size2D<T, U>
where T: Copy,

Returns the size each component of which clamped by corresponding components of start and end.

Shortcut for self.max(start).min(end).

Source

pub fn contains(self, other: Size2D<T, U>) -> bool

Source

pub fn greater_than(self, other: Size2D<T, U>) -> BoolVector2D

Returns vector with results of “greater then” operation on each component.

Source

pub fn lower_than(self, other: Size2D<T, U>) -> BoolVector2D

Returns vector with results of “lower then” operation on each component.

Source

pub fn is_empty(self) -> bool
where T: Zero,

Returns true if any component of size is zero, negative, or NaN.

Source§

impl<T, U> Size2D<T, U>
where T: PartialEq,

Source

pub fn equal(self, other: Size2D<T, U>) -> BoolVector2D

Returns vector with results of “equal” operation on each component.

Source

pub fn not_equal(self, other: Size2D<T, U>) -> BoolVector2D

Returns vector with results of “not equal” operation on each component.

Trait Implementations

Source§

impl<T, U> Add<&Size2D<T, U>> for Size2D<T, U>
where T: Copy + Add<Output = T>,

Source§

type Output = Size2D<T, U>

The resulting type after applying the + operator.
Source§

fn add(self, other: &Size2D<T, U>) -> Size2D<T, U>

Performs the + operation. Read more
Source§

impl<T, U> Add for Size2D<T, U>
where T: Add,

Source§

type Output = Size2D<<T as Add>::Output, U>

The resulting type after applying the + operator.
Source§

fn add(self, other: Size2D<T, U>) -> <Size2D<T, U> as Add>::Output

Performs the + operation. Read more
Source§

impl<T, U> AddAssign for Size2D<T, U>
where T: AddAssign,

Source§

fn add_assign(&mut self, other: Size2D<T, U>)

Performs the += operation. Read more
Source§

impl<T, U> Ceil for Size2D<T, U>
where T: Ceil,

Source§

fn ceil(self) -> Size2D<T, U>

Source§

impl<T, U> Clone for Size2D<T, U>
where T: Clone,

Source§

fn clone(&self) -> Size2D<T, U>

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl<T> ComputeSquaredDistance for Size2D<T, UnknownUnit>

Source§

fn compute_squared_distance( &self, other: &Size2D<T, UnknownUnit>, ) -> Result<SquaredDistance, ()>

Computes the squared distance between two animatable values.
Source§

impl<T, U> Debug for Size2D<T, U>
where T: Debug,

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl<T, U> Default for Size2D<T, U>
where T: Default,

Source§

fn default() -> Size2D<T, U>

Returns the “default value” for a type. Read more
Source§

impl<'de, T, U> Deserialize<'de> for Size2D<T, U>
where T: Deserialize<'de>,

Source§

fn deserialize<D>( deserializer: D, ) -> Result<Size2D<T, U>, <D as Deserializer<'de>>::Error>
where D: Deserializer<'de>,

Deserializes 2d size from tuple of width and height.

Source§

impl<T, U1, U2> Div<Scale<T, U1, U2>> for Size2D<T, U2>
where T: Copy + Div,

Source§

type Output = Size2D<<T as Div>::Output, U1>

The resulting type after applying the / operator.
Source§

fn div( self, scale: Scale<T, U1, U2>, ) -> <Size2D<T, U2> as Div<Scale<T, U1, U2>>>::Output

Performs the / operation. Read more
Source§

impl<T, U> Div<T> for Size2D<T, U>
where T: Copy + Div,

Source§

type Output = Size2D<<T as Div>::Output, U>

The resulting type after applying the / operator.
Source§

fn div(self, scale: T) -> <Size2D<T, U> as Div<T>>::Output

Performs the / operation. Read more
Source§

impl<T, U> DivAssign<Scale<T, U, U>> for Size2D<T, U>
where T: Copy + DivAssign,

Source§

fn div_assign(&mut self, other: Scale<T, U, U>)

Performs the /= operation. Read more
Source§

impl<T, U> DivAssign<T> for Size2D<T, U>
where T: Copy + DivAssign,

Source§

fn div_assign(&mut self, other: T)

Performs the /= operation. Read more
Source§

impl<T, U> Floor for Size2D<T, U>
where T: Floor,

Source§

fn floor(self) -> Size2D<T, U>

Source§

impl<T, U> From<[T; 2]> for Size2D<T, U>

Source§

fn from(_: [T; 2]) -> Size2D<T, U>

Converts to this type from the input type.
Source§

impl<T, U> From<(T, T)> for Size2D<T, U>

Source§

fn from(tuple: (T, T)) -> Size2D<T, U>

Converts to this type from the input type.
Source§

impl<T, U> From<Vector2D<T, U>> for Size2D<T, U>

Source§

fn from(v: Vector2D<T, U>) -> Size2D<T, U>

Converts to this type from the input type.
Source§

impl<T, U> Hash for Size2D<T, U>
where T: Hash,

Source§

fn hash<H>(&self, h: &mut H)
where H: Hasher,

Feeds this value into the given Hasher. Read more
1.3.0 · Source§

fn hash_slice<H>(data: &[Self], state: &mut H)
where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
Source§

impl<T, U> MallocSizeOf for Size2D<T, U>
where T: MallocSizeOf,

Source§

fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize

Measure the heap usage of all descendant heap-allocated structures, but not the space taken up by the value itself.
Source§

impl<T, U> MallocSizeOf for Size2D<T, U>
where T: MallocSizeOf,

Source§

fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize

Measure the heap usage of all descendant heap-allocated structures, but not the space taken up by the value itself.
Source§

impl<T, U> MallocSizeOf for Size2D<T, U>
where T: MallocSizeOf,

Source§

fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize

Measure the heap usage of all descendant heap-allocated structures, but not the space taken up by the value itself.
Source§

impl<T, U1, U2> Mul<Scale<T, U1, U2>> for Size2D<T, U1>
where T: Copy + Mul,

Source§

type Output = Size2D<<T as Mul>::Output, U2>

The resulting type after applying the * operator.
Source§

fn mul( self, scale: Scale<T, U1, U2>, ) -> <Size2D<T, U1> as Mul<Scale<T, U1, U2>>>::Output

Performs the * operation. Read more
Source§

impl<T, U> Mul<T> for Size2D<T, U>
where T: Copy + Mul,

Source§

type Output = Size2D<<T as Mul>::Output, U>

The resulting type after applying the * operator.
Source§

fn mul(self, scale: T) -> <Size2D<T, U> as Mul<T>>::Output

Performs the * operation. Read more
Source§

impl<T, U> MulAssign<Scale<T, U, U>> for Size2D<T, U>
where T: Copy + MulAssign,

Source§

fn mul_assign(&mut self, other: Scale<T, U, U>)

Performs the *= operation. Read more
Source§

impl<T, U> MulAssign<T> for Size2D<T, U>
where T: Copy + MulAssign,

Source§

fn mul_assign(&mut self, other: T)

Performs the *= operation. Read more
Source§

impl<T, U> Neg for Size2D<T, U>
where T: Neg,

Source§

type Output = Size2D<<T as Neg>::Output, U>

The resulting type after applying the - operator.
Source§

fn neg(self) -> <Size2D<T, U> as Neg>::Output

Performs the unary - operation. Read more
Source§

impl<T, U> PartialEq for Size2D<T, U>
where T: PartialEq,

Source§

fn eq(&self, other: &Size2D<T, U>) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl<T, U> Peek for Size2D<T, U>
where T: Peek,

Source§

unsafe fn peek_from(bytes: *const u8, output: *mut Size2D<T, U>) -> *const u8

Deserialize from the buffer pointed to by bytes. Read more
Source§

impl<T, U> Poke for Size2D<T, U>
where T: Poke,

Source§

fn max_size() -> usize

Return the maximum number of bytes that the serialized version of Self will occupy. Read more
Source§

unsafe fn poke_into(&self, bytes: *mut u8) -> *mut u8

Serialize into the buffer pointed to by bytes. Read more
Source§

impl<T, U> Round for Size2D<T, U>
where T: Round,

Source§

fn round(self) -> Size2D<T, U>

Source§

impl<T, U> Serialize for Size2D<T, U>
where T: Serialize,

Source§

fn serialize<S>( &self, serializer: S, ) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>
where S: Serializer,

Serializes 2d size to tuple of width and height.

Source§

impl<T, U> Sub for Size2D<T, U>
where T: Sub,

Source§

type Output = Size2D<<T as Sub>::Output, U>

The resulting type after applying the - operator.
Source§

fn sub(self, other: Size2D<T, U>) -> <Size2D<T, U> as Sub>::Output

Performs the - operation. Read more
Source§

impl<T, U> SubAssign for Size2D<T, U>
where T: SubAssign,

Source§

fn sub_assign(&mut self, other: Size2D<T, U>)

Performs the -= operation. Read more
Source§

impl<'a, T, U> Sum<&'a Size2D<T, U>> for Size2D<T, U>
where T: 'a + Add<Output = T> + Copy + Zero, U: 'a,

Source§

fn sum<I>(iter: I) -> Size2D<T, U>
where I: Iterator<Item = &'a Size2D<T, U>>,

Takes an iterator and generates Self from the elements by “summing up” the items.
Source§

impl<T, U> Sum for Size2D<T, U>
where T: Add<Output = T> + Zero,

Source§

fn sum<I>(iter: I) -> Size2D<T, U>
where I: Iterator<Item = Size2D<T, U>>,

Takes an iterator and generates Self from the elements by “summing up” the items.
Source§

impl<T> ToComputedValue for Size2D<T, UnknownUnit>
where T: ToComputedValue,

Source§

type ComputedValue = Size2D<<T as ToComputedValue>::ComputedValue, UnknownUnit>

The computed value type we’re going to be converted to.
Source§

fn to_computed_value( &self, context: &Context<'_>, ) -> <Size2D<T, UnknownUnit> as ToComputedValue>::ComputedValue

Convert a specified value to a computed value, using itself and the data inside the Context.
Source§

fn from_computed_value( computed: &<Size2D<T, UnknownUnit> as ToComputedValue>::ComputedValue, ) -> Size2D<T, UnknownUnit>

Convert a computed value to specified value form. Read more
Source§

impl<T, U> Zero for Size2D<T, U>
where T: Zero,

Source§

fn zero() -> Size2D<T, U>

Source§

impl<T, U> Copy for Size2D<T, U>
where T: Copy,

Source§

impl<T, U> Eq for Size2D<T, U>
where T: Eq,