#[repr(C)]pub struct Variant {
pub _address: u8,
}
Expand description
§mozilla::Variant
A variant / tagged union / heterogenous disjoint union / sum-type template
class. Similar in concept to (but not derived from) boost::variant
.
Sometimes, you may wish to use a C union with non-POD types. However, this is
forbidden in C++ because it is not clear which type in the union should have
its constructor and destructor run on creation and deletion
respectively. This is the problem that mozilla::Variant
solves.
§Usage
A mozilla::Variant
instance is constructed (via move or copy) from one of
its variant types (ignoring const and references). It does not support
construction from subclasses of variant types or types that coerce to one of
the variant types.
Variant<char, uint32_t> v1('a');
Variant<UniquePtr<A>, B, C> v2(MakeUnique<A>());
Variant<bool, char> v3(VariantType<char>, 0); // disambiguation needed
Variant<int, int> v4(VariantIndex<1>, 0); // 2nd int
Because specifying the full type of a Variant value is often verbose, there are two easier ways to construct values:
A. AsVariant() can be used to construct a Variant value using type inference in contexts such as expressions or when returning values from functions. Because AsVariant() must copy or move the value into a temporary and this cannot necessarily be elided by the compiler, it’s mostly appropriate only for use with primitive or very small types.
Variant<char, uint32_t> Foo() { return AsVariant('x'); }
// ...
Variant<char, uint32_t> v1 = Foo(); // v1 holds char('x').
B. Brace-construction with VariantType or VariantIndex; this also allows in-place construction with any number of arguments.
struct AB { AB(int, int){...} };
static Variant<AB, bool> foo()
{
return {VariantIndex<0>{}, 1, 2};
}
// ...
Variant<AB, bool> v0 = Foo(); // v0 holds AB(1,2).
All access to the contained value goes through type-safe accessors. Either the stored type, or the type index may be provided.
void
Foo(Variant<A, B, C> v)
{
if (v.is<A>()) {
A& ref = v.as<A>();
...
} else (v.is<1>()) { // Instead of v.is<B>.
...
} else {
...
}
}
In some situation, a Variant may be constructed from templated types, in which case it is possible that the same type could be given multiple times by an external developer. Or seemingly-different types could be aliases. In this case, repeated types can only be accessed through their index, to prevent ambiguous access by type.
// Bad!
template
// Good!
template
Attempting to use the contained value as type T1
when the Variant
instance contains a value of type T2
causes an assertion failure.
A a;
Variant<A, B, C> v(a);
v.as<B>(); // <--- Assertion failure!
Trying to use a Variant<Ts...>
instance as some type U
that is not a
member of the set of Ts...
is a compiler error.
A a;
Variant<A, B, C> v(a);
v.as<SomeRandomType>(); // <--- Compiler error!
Additionally, you can turn a Variant
that is<T>
into a T
by moving it
out of the containing Variant
instance with the extract<T>
method:
Variant<UniquePtr<A>, B, C> v(MakeUnique<A>());
auto ptr = v.extract<UniquePtr<A>>();
Finally, you can exhaustively match on the contained variant and branch into
different code paths depending on which type is contained. This is preferred
to manually checking every variant type T with is
// Bad!
char* foo(Variant<A, B, C, D>& v) {
if (v.is<A>()) {
return ...;
} else if (v.is<B>()) {
return ...;
} else {
return doSomething(v.as<C>()); // Forgot about case D!
}
}
// Instead, a single function object (that can deal with all possible
// options) may be provided:
struct FooMatcher
{
// The return type of all matchers must be identical.
char* operator()(A& a) { ... }
char* operator()(B& b) { ... }
char* operator()(C& c) { ... }
char* operator()(D& d) { ... } // Compile-time error to forget D!
}
char* foo(Variant<A, B, C, D>& v) {
return v.match(FooMatcher());
}
// In some situations, a single generic lambda may also be appropriate:
char* foo(Variant<A, B, C, D>& v) {
return v.match([](auto&) {...});
}
// Alternatively, multiple function objects may be provided, each one
// corresponding to an option, in the same order:
char* foo(Variant<A, B, C, D>& v) {
return v.match([](A&) { ... },
[](B&) { ... },
[](C&) { ... },
[](D&) { ... });
}
// In rare cases, the index of the currently-active alternative is
// needed, it may be obtained by adding a first parameter in the matcner
// callback, which will receive the index in its most compact type (just
// use `size_t` if the exact type is not important), e.g.:
char* foo(Variant<A, B, C, D>& v) {
return v.match([](auto aIndex, auto& aAlternative) {...});
// --OR--
return v.match([](size_t aIndex, auto& aAlternative) {...});
}
§Examples
A tree is either an empty leaf, or a node with a value and two children:
struct Leaf { };
template<typename T>
struct Node
{
T value;
Tree<T>* left;
Tree<T>* right;
};
template<typename T>
using Tree = Variant<Leaf, Node<T>>;
A copy-on-write string is either a non-owning reference to some existing string, or an owning reference to our copy:
class CopyOnWriteString
{
Variant<const char*, UniquePtr<char[]>> string;
...
};
Because Variant must be aligned suitable to hold any value stored within it, and because |alignas| requirements don’t affect platform ABI with respect to how parameters are laid out in memory, Variant can’t be used as the type of a function parameter. Pass Variant to functions by pointer or reference instead.
Fields§
§_address: u8
Trait Implementations§
impl Copy for Variant
impl StructuralPartialEq for Variant
Auto Trait Implementations§
impl Freeze for Variant
impl RefUnwindSafe for Variant
impl Send for Variant
impl Sync for Variant
impl Unpin for Variant
impl UnwindSafe for Variant
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
source§unsafe fn clone_to_uninit(&self, dst: *mut T)
unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit
)source§impl<T> Filterable for T
impl<T> Filterable for T
source§fn filterable(
self,
filter_name: &'static str,
) -> RequestFilterDataProvider<T, fn(_: DataRequest<'_>) -> bool>
fn filterable( self, filter_name: &'static str, ) -> RequestFilterDataProvider<T, fn(_: DataRequest<'_>) -> bool>
source§impl<T> Instrument for T
impl<T> Instrument for T
source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<T> IntoEither for T
impl<T> IntoEither for T
source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moresource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more