Trait petgraph::visit::IntoEdges

source ·
pub trait IntoEdges: IntoEdgeReferences + IntoNeighbors {
    type Edges: Iterator<Item = Self::EdgeRef>;

    // Required method
    fn edges(self, a: Self::NodeId) -> Self::Edges;
}
Expand description

Access to the edges of each node.

The edges are, depending on the graph’s edge type:

  • Directed: All edges from a.
  • Undirected: All edges connected to a.

This is an extended version of the trait IntoNeighbors; the former only iterates over the target node identifiers, while this trait yields edge references (trait EdgeRef).

Required Associated Types§

source

type Edges: Iterator<Item = Self::EdgeRef>

Required Methods§

source

fn edges(self, a: Self::NodeId) -> Self::Edges

Object Safety§

This trait is not object safe.

Implementations on Foreign Types§

source§

impl<'a, G> IntoEdges for &'a G
where G: IntoEdges,

§

type Edges = <G as IntoEdges>::Edges

source§

fn edges(self, a: Self::NodeId) -> Self::Edges

Implementors§

source§

impl<'a, 'b, G> IntoEdges for &'b Frozen<'a, G>
where G: IntoEdges,

§

type Edges = <G as IntoEdges>::Edges

source§

impl<'a, G, F> IntoEdges for &'a EdgeFiltered<G, F>
where G: IntoEdges, F: FilterEdge<G::EdgeRef>,

§

type Edges = EdgeFilteredEdges<'a, G, <G as IntoEdges>::Edges, F>

source§

impl<'a, G, F> IntoEdges for &'a NodeFiltered<G, F>
where G: IntoEdges, F: FilterNode<G::NodeId>,

§

type Edges = NodeFilteredEdges<'a, G, <G as IntoEdges>::Edges, F>

source§

impl<'a, N, E, Ty, Ix> IntoEdges for &'a Csr<N, E, Ty, Ix>
where Ty: EdgeType, Ix: IndexType,

§

type Edges = Edges<'a, E, Ty, Ix>

source§

impl<'a, N, E, Ty, Ix> IntoEdges for &'a StableGraph<N, E, Ty, Ix>
where Ty: EdgeType, Ix: IndexType,

§

type Edges = Edges<'a, E, Ty, Ix>

source§

impl<'a, N, E, Ty, Ix> IntoEdges for &'a Graph<N, E, Ty, Ix>
where Ty: EdgeType, Ix: IndexType,

§

type Edges = Edges<'a, E, Ty, Ix>

source§

impl<'a, N, E: 'a, Ty> IntoEdges for &'a GraphMap<N, E, Ty>
where N: NodeTrait + 'a, Ty: EdgeType,

§

type Edges = Edges<'a, N, E, Ty>