[][src]Struct euclid::vector::Vector3D

#[repr(C)]pub struct Vector3D<T, U> {
    pub x: T,
    pub y: T,
    pub z: T,
    // some fields omitted
}

A 3d Vector tagged with a unit.

Fields

x: T

The x (traditionally, horizontal) coordinate.

y: T

The y (traditionally, vertical) coordinate.

z: T

The z (traditionally, depth) coordinate.

Implementations

impl<T, U> Vector3D<T, U>[src]

pub fn zero() -> Self where
    T: Zero
[src]

Constructor, setting all components to zero.

pub const fn new(x: T, y: T, z: T) -> Self[src]

Constructor taking scalar values directly.

pub fn from_lengths(
    x: Length<T, U>,
    y: Length<T, U>,
    z: Length<T, U>
) -> Vector3D<T, U>
[src]

Constructor taking properly Lengths instead of scalar values.

pub fn from_untyped(p: Vector3D<T, UnknownUnit>) -> Self[src]

Tag a unitless value with units.

pub fn abs(&self) -> Self where
    T: Signed
[src]

Computes the vector with absolute values of each component.

Example

enum U {}

assert_eq!(vec3::<_, U>(-1, 0, 2).abs(), vec3(1, 0, 2));

let vec = vec3::<_, U>(f32::NAN, 0.0, -f32::MAX).abs();
assert!(vec.x.is_nan());
assert_eq!(vec.y, 0.0);
assert_eq!(vec.z, f32::MAX);

Panics

The behavior for each component follows the scalar type's implementation of num_traits::Signed::abs.

pub fn dot(self, other: Self) -> T where
    T: Add<Output = T> + Mul<Output = T>, 
[src]

Dot product.

impl<T: Copy, U> Vector3D<T, U>[src]

pub fn cross(self, other: Self) -> Self where
    T: Sub<Output = T> + Mul<Output = T>, 
[src]

Cross product.

pub fn to_point(&self) -> Point3D<T, U>[src]

Cast this vector into a point.

Equivalent to adding this vector to the origin.

pub fn xy(&self) -> Vector2D<T, U>[src]

Returns a 2d vector using this vector's x and y coordinates

pub fn xz(&self) -> Vector2D<T, U>[src]

Returns a 2d vector using this vector's x and z coordinates

pub fn yz(&self) -> Vector2D<T, U>[src]

Returns a 2d vector using this vector's x and z coordinates

pub fn to_array(&self) -> [T; 3][src]

Cast into an array with x, y and z.

pub fn to_array_4d(&self) -> [T; 4] where
    T: Zero
[src]

Cast into an array with x, y, z and 0.

pub fn to_tuple(&self) -> (T, T, T)[src]

Cast into a tuple with x, y and z.

pub fn to_tuple_4d(&self) -> (T, T, T, T) where
    T: Zero
[src]

Cast into a tuple with x, y, z and 0.

pub fn to_untyped(&self) -> Vector3D<T, UnknownUnit>[src]

Drop the units, preserving only the numeric value.

pub fn cast_unit<V>(&self) -> Vector3D<T, V>[src]

Cast the unit.

pub fn to_2d(&self) -> Vector2D<T, U>[src]

Convert into a 2d vector.

#[must_use]pub fn round(&self) -> Self where
    T: Round
[src]

Rounds each component to the nearest integer value.

This behavior is preserved for negative values (unlike the basic cast).

enum Mm {}

assert_eq!(vec3::<_, Mm>(-0.1, -0.8, 0.4).round(), vec3::<_, Mm>(0.0, -1.0, 0.0))

#[must_use]pub fn ceil(&self) -> Self where
    T: Ceil
[src]

Rounds each component to the smallest integer equal or greater than the original value.

This behavior is preserved for negative values (unlike the basic cast).

enum Mm {}

assert_eq!(vec3::<_, Mm>(-0.1, -0.8, 0.4).ceil(), vec3::<_, Mm>(0.0, 0.0, 1.0))

#[must_use]pub fn floor(&self) -> Self where
    T: Floor
[src]

Rounds each component to the biggest integer equal or lower than the original value.

This behavior is preserved for negative values (unlike the basic cast).

enum Mm {}

assert_eq!(vec3::<_, Mm>(-0.1, -0.8, 0.4).floor(), vec3::<_, Mm>(-1.0, -1.0, 0.0))

pub fn to_transform(&self) -> Transform3D<T, U, U> where
    T: Zero + One
[src]

Creates translation by this vector in vector units

impl<T, U> Vector3D<T, U> where
    T: Copy + Mul<T, Output = T> + Add<T, Output = T>, 
[src]

pub fn square_length(&self) -> T[src]

Returns the vector's length squared.

pub fn project_onto_vector(&self, onto: Self) -> Self where
    T: Sub<T, Output = T> + Div<T, Output = T>, 
[src]

Returns this vector projected onto another one.

Projecting onto a nil vector will cause a division by zero.

impl<T: Float, U> Vector3D<T, U>[src]

pub fn angle_to(&self, other: Self) -> Angle<T> where
    T: Trig
[src]

Returns the positive angle between this vector and another vector.

The returned angle is between 0 and PI.

pub fn length(&self) -> T[src]

Returns the vector length.

#[must_use]pub fn normalize(self) -> Self[src]

Returns the vector with length of one unit

#[must_use]pub fn try_normalize(self) -> Option<Self>[src]

Returns the vector with length of one unit.

Unlike Vector2D::normalize, this returns None in the case that the length of the vector is zero.

#[must_use]pub fn robust_normalize(self) -> Self[src]

Return the normalized vector even if the length is larger than the max value of Float.

pub fn with_max_length(&self, max_length: T) -> Self[src]

Return this vector capped to a maximum length.

pub fn with_min_length(&self, min_length: T) -> Self[src]

Return this vector with a minimum length applied.

pub fn clamp_length(&self, min: T, max: T) -> Self[src]

Return this vector with minimum and maximum lengths applied.

impl<T, U> Vector3D<T, U> where
    T: Copy + One + Add<Output = T> + Sub<Output = T> + Mul<Output = T>, 
[src]

pub fn lerp(&self, other: Self, t: T) -> Self[src]

Linearly interpolate each component between this vector and another vector.

Example

use euclid::vec3;
use euclid::default::Vector3D;

let from: Vector3D<_> = vec3(0.0, 10.0, -1.0);
let to:  Vector3D<_> = vec3(8.0, -4.0,  0.0);

assert_eq!(from.lerp(to, -1.0), vec3(-8.0,  24.0, -2.0));
assert_eq!(from.lerp(to,  0.0), vec3( 0.0,  10.0, -1.0));
assert_eq!(from.lerp(to,  0.5), vec3( 4.0,   3.0, -0.5));
assert_eq!(from.lerp(to,  1.0), vec3( 8.0,  -4.0,  0.0));
assert_eq!(from.lerp(to,  2.0), vec3(16.0, -18.0,  1.0));

pub fn reflect(&self, normal: Self) -> Self[src]

Returns a reflection vector using an incident ray and a surface normal.

impl<T: PartialOrd, U> Vector3D<T, U>[src]

pub fn min(self, other: Self) -> Self[src]

Returns the vector each component of which are minimum of this vector and another.

pub fn max(self, other: Self) -> Self[src]

Returns the vector each component of which are maximum of this vector and another.

pub fn clamp(&self, start: Self, end: Self) -> Self where
    T: Copy
[src]

Returns the vector each component of which is clamped by corresponding components of start and end.

Shortcut for self.max(start).min(end).

pub fn greater_than(&self, other: Self) -> BoolVector3D[src]

Returns vector with results of "greater than" operation on each component.

pub fn lower_than(&self, other: Self) -> BoolVector3D[src]

Returns vector with results of "lower than" operation on each component.

impl<T: PartialEq, U> Vector3D<T, U>[src]

pub fn equal(&self, other: Self) -> BoolVector3D[src]

Returns vector with results of "equal" operation on each component.

pub fn not_equal(&self, other: Self) -> BoolVector3D[src]

Returns vector with results of "not equal" operation on each component.

impl<T: NumCast + Copy, U> Vector3D<T, U>[src]

pub fn cast<NewT: NumCast>(&self) -> Vector3D<NewT, U>[src]

Cast from one numeric representation to another, preserving the units.

When casting from floating vector to integer coordinates, the decimals are truncated as one would expect from a simple cast, but this behavior does not always make sense geometrically. Consider using round(), ceil() or floor() before casting.

pub fn try_cast<NewT: NumCast>(&self) -> Option<Vector3D<NewT, U>>[src]

Fallible cast from one numeric representation to another, preserving the units.

When casting from floating vector to integer coordinates, the decimals are truncated as one would expect from a simple cast, but this behavior does not always make sense geometrically. Consider using round(), ceil() or floor() before casting.

pub fn to_f32(&self) -> Vector3D<f32, U>[src]

Cast into an f32 vector.

pub fn to_f64(&self) -> Vector3D<f64, U>[src]

Cast into an f64 vector.

pub fn to_usize(&self) -> Vector3D<usize, U>[src]

Cast into an usize vector, truncating decimals if any.

When casting from floating vector vectors, it is worth considering whether to round(), ceil() or floor() before the cast in order to obtain the desired conversion behavior.

pub fn to_u32(&self) -> Vector3D<u32, U>[src]

Cast into an u32 vector, truncating decimals if any.

When casting from floating vector vectors, it is worth considering whether to round(), ceil() or floor() before the cast in order to obtain the desired conversion behavior.

pub fn to_i32(&self) -> Vector3D<i32, U>[src]

Cast into an i32 vector, truncating decimals if any.

When casting from floating vector vectors, it is worth considering whether to round(), ceil() or floor() before the cast in order to obtain the desired conversion behavior.

pub fn to_i64(&self) -> Vector3D<i64, U>[src]

Cast into an i64 vector, truncating decimals if any.

When casting from floating vector vectors, it is worth considering whether to round(), ceil() or floor() before the cast in order to obtain the desired conversion behavior.

Trait Implementations

impl<T: Add, U> Add<Vector3D<T, U>> for Point3D<T, U>[src]

type Output = Point3D<T::Output, U>

The resulting type after applying the + operator.

impl<T: Add, U> Add<Vector3D<T, U>> for Vector3D<T, U>[src]

type Output = Vector3D<T::Output, U>

The resulting type after applying the + operator.

impl<T: Copy + Add<T, Output = T>, U> AddAssign<Vector3D<T, U>> for Point3D<T, U>[src]

impl<T: Copy + Add<T, Output = T>, U> AddAssign<Vector3D<T, U>> for Vector3D<T, U>[src]

impl<T: ApproxEq<T>, U> ApproxEq<Vector3D<T, U>> for Vector3D<T, U>[src]

impl<T: Ceil, U> Ceil for Vector3D<T, U>[src]

fn ceil(self) -> Self[src]

impl<T: Clone, U> Clone for Vector3D<T, U>[src]

impl<T: Copy, U> Copy for Vector3D<T, U>[src]

impl<T: Debug, U> Debug for Vector3D<T, U>[src]

impl<T: Default, U> Default for Vector3D<T, U>[src]

impl<'de, T, U> Deserialize<'de> for Vector3D<T, U> where
    T: Deserialize<'de>, 
[src]

impl<T: Display, U> Display for Vector3D<T, U>[src]

impl<T: Clone + Div, U1, U2> Div<Scale<T, U1, U2>> for Vector3D<T, U2>[src]

type Output = Vector3D<T::Output, U1>

The resulting type after applying the / operator.

impl<T: Clone + Div, U> Div<T> for Vector3D<T, U>[src]

type Output = Vector3D<T::Output, U>

The resulting type after applying the / operator.

impl<T: Clone + DivAssign, U> DivAssign<Scale<T, U, U>> for Vector3D<T, U>[src]

impl<T: Copy + Div<T, Output = T>, U> DivAssign<T> for Vector3D<T, U>[src]

impl<T: Eq, U> Eq for Vector3D<T, U>[src]

impl<T: Floor, U> Floor for Vector3D<T, U>[src]

fn floor(self) -> Self[src]

impl<T, U> From<[T; 3]> for Vector3D<T, U>[src]

impl<T, U> From<(T, T, T)> for Vector3D<T, U>[src]

impl<T: Float + ApproxEq<T>, Src, Dst> From<Vector3D<T, Dst>> for RigidTransform3D<T, Src, Dst>[src]

impl<T, Src, Dst> From<Vector3D<T, Src>> for Translation3D<T, Src, Dst>[src]

impl<T: Zero, U> From<Vector3D<T, U>> for HomogeneousVector<T, U>[src]

impl<T, U> From<Vector3D<T, U>> for Size3D<T, U>[src]

impl<T: Hash, U> Hash for Vector3D<T, U>[src]

impl<T, U> Into<[T; 3]> for Vector3D<T, U>[src]

impl<T, U> Into<(T, T, T)> for Vector3D<T, U>[src]

impl<T, Src, Dst> Into<Vector3D<T, Src>> for Translation3D<T, Src, Dst>[src]

impl<T: Clone + Mul, U1, U2> Mul<Scale<T, U1, U2>> for Vector3D<T, U1>[src]

type Output = Vector3D<T::Output, U2>

The resulting type after applying the * operator.

impl<T: Clone + Mul, U> Mul<T> for Vector3D<T, U>[src]

type Output = Vector3D<T::Output, U>

The resulting type after applying the * operator.

impl<T: Clone + MulAssign, U> MulAssign<Scale<T, U, U>> for Vector3D<T, U>[src]

impl<T: Copy + Mul<T, Output = T>, U> MulAssign<T> for Vector3D<T, U>[src]

impl<T: Neg, U> Neg for Vector3D<T, U>[src]

type Output = Vector3D<T::Output, U>

The resulting type after applying the - operator.

impl<T: PartialEq, U> PartialEq<Vector3D<T, U>> for Vector3D<T, U>[src]

impl<T: Round, U> Round for Vector3D<T, U>[src]

fn round(self) -> Self[src]

impl<T, U> Serialize for Vector3D<T, U> where
    T: Serialize
[src]

impl<T: Sub, U> Sub<Vector3D<T, U>> for Point3D<T, U>[src]

type Output = Point3D<T::Output, U>

The resulting type after applying the - operator.

impl<T: Sub, U> Sub<Vector3D<T, U>> for Vector3D<T, U>[src]

type Output = Vector3D<T::Output, U>

The resulting type after applying the - operator.

impl<T: Copy + Sub<T, Output = T>, U> SubAssign<Vector3D<T, U>> for Point3D<T, U>[src]

impl<T: Copy + Sub<T, Output = T>, U> SubAssign<Vector3D<T, U>> for Vector3D<T, U>[src]

impl<T: Zero, U> Zero for Vector3D<T, U>[src]

fn zero() -> Self[src]

Constructor, setting all components to zero.

Auto Trait Implementations

impl<T, U> RefUnwindSafe for Vector3D<T, U> where
    T: RefUnwindSafe,
    U: RefUnwindSafe

impl<T, U> Send for Vector3D<T, U> where
    T: Send,
    U: Send

impl<T, U> Sync for Vector3D<T, U> where
    T: Sync,
    U: Sync

impl<T, U> Unpin for Vector3D<T, U> where
    T: Unpin,
    U: Unpin

impl<T, U> UnwindSafe for Vector3D<T, U> where
    T: UnwindSafe,
    U: UnwindSafe

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> DeserializeOwned for T where
    T: for<'de> Deserialize<'de>, 
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T> ToString for T where
    T: Display + ?Sized
[src]

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<T> Zero for T where
    T: Zero
[src]