Struct petgraph::graph::Graph

source ·
pub struct Graph<N, E, Ty = Directed, Ix = DefaultIx> {
    nodes: Vec<Node<N, Ix>>,
    edges: Vec<Edge<E, Ix>>,
    ty: PhantomData<Ty>,
}
Expand description

Graph<N, E, Ty, Ix> is a graph datastructure using an adjacency list representation.

Graph is parameterized over:

  • Associated data N for nodes and E for edges, called weights. The associated data can be of arbitrary type.
  • Edge type Ty that determines whether the graph edges are directed or undirected.
  • Index type Ix, which determines the maximum size of the graph.

The graph uses O(|V| + |E|) space, and allows fast node and edge insert, efficient graph search and graph algorithms. It implements O(e’) edge lookup and edge and node removals, where e’ is some local measure of edge count. Based on the graph datastructure used in rustc.

Here’s an example of building a graph with directed edges, and below an illustration of how it could be rendered with graphviz (see Dot):

use petgraph::Graph;

let mut deps = Graph::<&str, &str>::new();
let pg = deps.add_node("petgraph");
let fb = deps.add_node("fixedbitset");
let qc = deps.add_node("quickcheck");
let rand = deps.add_node("rand");
let libc = deps.add_node("libc");
deps.extend_with_edges(&[
    (pg, fb), (pg, qc),
    (qc, rand), (rand, libc), (qc, libc),
]);

graph-example

§Graph Indices

The graph maintains indices for nodes and edges, and node and edge weights may be accessed mutably. Indices range in a compact interval, for example for n nodes indices are 0 to n - 1 inclusive.

NodeIndex and EdgeIndex are types that act as references to nodes and edges, but these are only stable across certain operations. Adding nodes or edges keeps indices stable. Removing nodes or edges may shift other indices. Removing a node will force the last node to shift its index to take its place. Similarly, removing an edge shifts the index of the last edge.

The Ix parameter is u32 by default. The goal is that you can ignore this parameter completely unless you need a very big graph – then you can use usize.

§Pros and Cons of Indices

  • The fact that the node and edge indices in the graph each are numbered in compact intervals (from 0 to n - 1 for n nodes) simplifies some graph algorithms.

  • You can select graph index integer type after the size of the graph. A smaller size may have better performance.

  • Using indices allows mutation while traversing the graph, see Dfs, and .neighbors(a).detach().

  • You can create several graphs using the equal node indices but with differing weights or differing edges.

  • The Graph is a regular rust collection and is Send and Sync (as long as associated data N and E are).

  • Some indices shift during node or edge removal, so that is a drawback of removing elements. Indices don’t allow as much compile time checking as references.

Fields§

§nodes: Vec<Node<N, Ix>>§edges: Vec<Edge<E, Ix>>§ty: PhantomData<Ty>

Implementations§

source§

impl<N, E> Graph<N, E, Directed>

source

pub fn new() -> Self

Create a new Graph with directed edges.

This is a convenience method. Use Graph::with_capacity or Graph::default for a constructor that is generic in all the type parameters of Graph.

source§

impl<N, E> Graph<N, E, Undirected>

source

pub fn new_undirected() -> Self

Create a new Graph with undirected edges.

This is a convenience method. Use Graph::with_capacity or Graph::default for a constructor that is generic in all the type parameters of Graph.

source§

impl<N, E, Ty, Ix> Graph<N, E, Ty, Ix>
where Ty: EdgeType, Ix: IndexType,

source

pub fn with_capacity(nodes: usize, edges: usize) -> Self

Create a new Graph with estimated capacity.

source

pub fn node_count(&self) -> usize

Return the number of nodes (vertices) in the graph.

Computes in O(1) time.

source

pub fn edge_count(&self) -> usize

Return the number of edges in the graph.

Computes in O(1) time.

source

pub fn is_directed(&self) -> bool

Whether the graph has directed edges or not.

source

pub fn add_node(&mut self, weight: N) -> NodeIndex<Ix>

Add a node (also called vertex) with associated data weight to the graph.

Computes in O(1) time.

Return the index of the new node.

Panics if the Graph is at the maximum number of nodes for its index type (N/A if usize).

source

pub fn node_weight(&self, a: NodeIndex<Ix>) -> Option<&N>

Access the weight for node a.

Also available with indexing syntax: &graph[a].

source

pub fn node_weight_mut(&mut self, a: NodeIndex<Ix>) -> Option<&mut N>

Access the weight for node a, mutably.

Also available with indexing syntax: &mut graph[a].

source

pub fn add_edge( &mut self, a: NodeIndex<Ix>, b: NodeIndex<Ix>, weight: E, ) -> EdgeIndex<Ix>

Add an edge from a to b to the graph, with its associated data weight.

Return the index of the new edge.

Computes in O(1) time.

Panics if any of the nodes don’t exist.
Panics if the Graph is at the maximum number of edges for its index type (N/A if usize).

Note: Graph allows adding parallel (“duplicate”) edges. If you want to avoid this, use .update_edge(a, b, weight) instead.

source

pub fn update_edge( &mut self, a: NodeIndex<Ix>, b: NodeIndex<Ix>, weight: E, ) -> EdgeIndex<Ix>

Add or update an edge from a to b. If the edge already exists, its weight is updated.

Return the index of the affected edge.

Computes in O(e’) time, where e’ is the number of edges connected to a (and b, if the graph edges are undirected).

Panics if any of the nodes don’t exist.

source

pub fn edge_weight(&self, e: EdgeIndex<Ix>) -> Option<&E>

Access the weight for edge e.

Also available with indexing syntax: &graph[e].

source

pub fn edge_weight_mut(&mut self, e: EdgeIndex<Ix>) -> Option<&mut E>

Access the weight for edge e, mutably.

Also available with indexing syntax: &mut graph[e].

source

pub fn edge_endpoints( &self, e: EdgeIndex<Ix>, ) -> Option<(NodeIndex<Ix>, NodeIndex<Ix>)>

Access the source and target nodes for e.

source

pub fn remove_node(&mut self, a: NodeIndex<Ix>) -> Option<N>

Remove a from the graph if it exists, and return its weight. If it doesn’t exist in the graph, return None.

Apart from a, this invalidates the last node index in the graph (that node will adopt the removed node index). Edge indices are invalidated as they would be following the removal of each edge with an endpoint in a.

Computes in O(e’) time, where e’ is the number of affected edges, including n calls to .remove_edge() where n is the number of edges with an endpoint in a, and including the edges with an endpoint in the displaced node.

For edge e with endpoints edge_node, replace links to it, with links to edge_next.

source

pub fn remove_edge(&mut self, e: EdgeIndex<Ix>) -> Option<E>

Remove an edge and return its edge weight, or None if it didn’t exist.

Apart from e, this invalidates the last edge index in the graph (that edge will adopt the removed edge index).

Computes in O(e’) time, where e’ is the size of four particular edge lists, for the vertices of e and the vertices of another affected edge.

source

fn remove_edge_adjust_indices(&mut self, e: EdgeIndex<Ix>) -> Option<E>

source

pub fn neighbors(&self, a: NodeIndex<Ix>) -> Neighbors<'_, E, Ix>

Return an iterator of all nodes with an edge starting from a.

  • Directed: Outgoing edges from a.
  • Undirected: All edges from or to a.

Produces an empty iterator if the node doesn’t exist.
Iterator element type is NodeIndex<Ix>.

Use .neighbors(a).detach() to get a neighbor walker that does not borrow from the graph.

source

pub fn neighbors_directed( &self, a: NodeIndex<Ix>, dir: Direction, ) -> Neighbors<'_, E, Ix>

Return an iterator of all neighbors that have an edge between them and a, in the specified direction. If the graph’s edges are undirected, this is equivalent to .neighbors(a).

  • Directed, Outgoing: All edges from a.
  • Directed, Incoming: All edges to a.
  • Undirected: All edges from or to a.

Produces an empty iterator if the node doesn’t exist.
Iterator element type is NodeIndex<Ix>.

For a Directed graph, neighbors are listed in reverse order of their addition to the graph, so the most recently added edge’s neighbor is listed first. The order in an Undirected graph is arbitrary.

Use .neighbors_directed(a, dir).detach() to get a neighbor walker that does not borrow from the graph.

source

pub fn neighbors_undirected(&self, a: NodeIndex<Ix>) -> Neighbors<'_, E, Ix>

Return an iterator of all neighbors that have an edge between them and a, in either direction. If the graph’s edges are undirected, this is equivalent to .neighbors(a).

  • Directed and Undirected: All edges from or to a.

Produces an empty iterator if the node doesn’t exist.
Iterator element type is NodeIndex<Ix>.

Use .neighbors_undirected(a).detach() to get a neighbor walker that does not borrow from the graph.

source

pub fn edges(&self, a: NodeIndex<Ix>) -> Edges<'_, E, Ty, Ix>

Return an iterator of all edges of a.

  • Directed: Outgoing edges from a.
  • Undirected: All edges connected to a.

Produces an empty iterator if the node doesn’t exist.
Iterator element type is EdgeReference<E, Ix>.

source

pub fn edges_directed( &self, a: NodeIndex<Ix>, dir: Direction, ) -> Edges<'_, E, Ty, Ix>

Return an iterator of all edges of a, in the specified direction.

  • Directed, Outgoing: All edges from a.
  • Directed, Incoming: All edges to a.
  • Undirected: All edges connected to a.

Produces an empty iterator if the node a doesn’t exist.
Iterator element type is EdgeReference<E, Ix>.

source

fn edges_undirected(&self, a: NodeIndex<Ix>) -> Edges<'_, E, Ty, Ix>

Return an iterator over all edges connected to a.

  • Directed and Undirected: All edges connected to a.

Produces an empty iterator if the node a doesn’t exist.
Iterator element type is EdgeReference<E, Ix>.

source

pub fn contains_edge(&self, a: NodeIndex<Ix>, b: NodeIndex<Ix>) -> bool

Lookup if there is an edge from a to b.

Computes in O(e’) time, where e’ is the number of edges connected to a (and b, if the graph edges are undirected).

source

pub fn find_edge( &self, a: NodeIndex<Ix>, b: NodeIndex<Ix>, ) -> Option<EdgeIndex<Ix>>

Lookup an edge from a to b.

Computes in O(e’) time, where e’ is the number of edges connected to a (and b, if the graph edges are undirected).

source

fn find_edge_directed_from_node( &self, node: &Node<N, Ix>, b: NodeIndex<Ix>, ) -> Option<EdgeIndex<Ix>>

source

pub fn find_edge_undirected( &self, a: NodeIndex<Ix>, b: NodeIndex<Ix>, ) -> Option<(EdgeIndex<Ix>, Direction)>

Lookup an edge between a and b, in either direction.

If the graph is undirected, then this is equivalent to .find_edge().

Return the edge index and its directionality, with Outgoing meaning from a to b and Incoming the reverse, or None if the edge does not exist.

source

fn find_edge_undirected_from_node( &self, node: &Node<N, Ix>, b: NodeIndex<Ix>, ) -> Option<(EdgeIndex<Ix>, Direction)>

source

pub fn externals(&self, dir: Direction) -> Externals<'_, N, Ty, Ix>

Return an iterator over either the nodes without edges to them (Incoming) or from them (Outgoing).

An internal node has both incoming and outgoing edges. The nodes in .externals(Incoming) are the source nodes and .externals(Outgoing) are the sinks of the graph.

For a graph with undirected edges, both the sinks and the sources are just the nodes without edges.

The whole iteration computes in O(|V|) time.

source

pub fn node_indices(&self) -> NodeIndices<Ix>

Return an iterator over the node indices of the graph

source

pub fn node_weights_mut(&mut self) -> NodeWeightsMut<'_, N, Ix>

Return an iterator yielding mutable access to all node weights.

The order in which weights are yielded matches the order of their node indices.

source

pub fn edge_indices(&self) -> EdgeIndices<Ix>

Return an iterator over the edge indices of the graph

source

pub fn edge_references(&self) -> EdgeReferences<'_, E, Ix>

Create an iterator over all edges, in indexed order.

Iterator element type is EdgeReference<E, Ix>.

source

pub fn edge_weights_mut(&mut self) -> EdgeWeightsMut<'_, E, Ix>

Return an iterator yielding mutable access to all edge weights.

The order in which weights are yielded matches the order of their edge indices.

source

pub fn raw_nodes(&self) -> &[Node<N, Ix>]

Access the internal node array.

source

pub fn raw_edges(&self) -> &[Edge<E, Ix>]

Access the internal edge array.

source

pub fn into_nodes_edges(self) -> (Vec<Node<N, Ix>>, Vec<Edge<E, Ix>>)

Convert the graph into a vector of Nodes and a vector of Edges

source

pub fn first_edge( &self, a: NodeIndex<Ix>, dir: Direction, ) -> Option<EdgeIndex<Ix>>

Accessor for data structure internals: the first edge in the given direction.

source

pub fn next_edge( &self, e: EdgeIndex<Ix>, dir: Direction, ) -> Option<EdgeIndex<Ix>>

Accessor for data structure internals: the next edge for the given direction.

source

pub fn index_twice_mut<T, U>( &mut self, i: T, j: U, ) -> (&mut <Self as Index<T>>::Output, &mut <Self as Index<U>>::Output)
where Self: IndexMut<T> + IndexMut<U>, T: GraphIndex, U: GraphIndex,

Index the Graph by two indices, any combination of node or edge indices is fine.

Panics if the indices are equal or if they are out of bounds.

use petgraph::{Graph, Incoming};
use petgraph::visit::Dfs;

let mut gr = Graph::new();
let a = gr.add_node(0.);
let b = gr.add_node(0.);
let c = gr.add_node(0.);
gr.add_edge(a, b, 3.);
gr.add_edge(b, c, 2.);
gr.add_edge(c, b, 1.);

// walk the graph and sum incoming edges into the node weight
let mut dfs = Dfs::new(&gr, a);
while let Some(node) = dfs.next(&gr) {
    // use a walker -- a detached neighbors iterator
    let mut edges = gr.neighbors_directed(node, Incoming).detach();
    while let Some(edge) = edges.next_edge(&gr) {
        let (nw, ew) = gr.index_twice_mut(node, edge);
        *nw += *ew;
    }
}

// check the result
assert_eq!(gr[a], 0.);
assert_eq!(gr[b], 4.);
assert_eq!(gr[c], 2.);
source

pub fn reverse(&mut self)

Reverse the direction of all edges

source

pub fn clear(&mut self)

Remove all nodes and edges

source

pub fn clear_edges(&mut self)

Remove all edges

source

pub fn capacity(&self) -> (usize, usize)

Return the current node and edge capacity of the graph.

source

pub fn reserve_nodes(&mut self, additional: usize)

Reserves capacity for at least additional more nodes to be inserted in the graph. Graph may reserve more space to avoid frequent reallocations.

Panics if the new capacity overflows usize.

source

pub fn reserve_edges(&mut self, additional: usize)

Reserves capacity for at least additional more edges to be inserted in the graph. Graph may reserve more space to avoid frequent reallocations.

Panics if the new capacity overflows usize.

source

pub fn reserve_exact_nodes(&mut self, additional: usize)

Reserves the minimum capacity for exactly additional more nodes to be inserted in the graph. Does nothing if the capacity is already sufficient.

Prefer reserve_nodes if future insertions are expected.

Panics if the new capacity overflows usize.

source

pub fn reserve_exact_edges(&mut self, additional: usize)

Reserves the minimum capacity for exactly additional more edges to be inserted in the graph. Does nothing if the capacity is already sufficient.

Prefer reserve_edges if future insertions are expected.

Panics if the new capacity overflows usize.

source

pub fn shrink_to_fit_nodes(&mut self)

Shrinks the capacity of the underlying nodes collection as much as possible.

source

pub fn shrink_to_fit_edges(&mut self)

Shrinks the capacity of the underlying edges collection as much as possible.

source

pub fn shrink_to_fit(&mut self)

Shrinks the capacity of the graph as much as possible.

source

pub fn retain_nodes<F>(&mut self, visit: F)
where F: FnMut(Frozen<'_, Self>, NodeIndex<Ix>) -> bool,

Keep all nodes that return true from the visit closure, remove the others.

visit is provided a proxy reference to the graph, so that the graph can be walked and associated data modified.

The order nodes are visited is not specified.

source

pub fn retain_edges<F>(&mut self, visit: F)
where F: FnMut(Frozen<'_, Self>, EdgeIndex<Ix>) -> bool,

Keep all edges that return true from the visit closure, remove the others.

visit is provided a proxy reference to the graph, so that the graph can be walked and associated data modified.

The order edges are visited is not specified.

source

pub fn from_edges<I>(iterable: I) -> Self

Create a new Graph from an iterable of edges.

Node weights N are set to default values. Edge weights E may either be specified in the list, or they are filled with default values.

Nodes are inserted automatically to match the edges.

use petgraph::Graph;

let gr = Graph::<(), i32>::from_edges(&[
    (0, 1), (0, 2), (0, 3),
    (1, 2), (1, 3),
    (2, 3),
]);
source

pub fn extend_with_edges<I>(&mut self, iterable: I)

Extend the graph from an iterable of edges.

Node weights N are set to default values. Edge weights E may either be specified in the list, or they are filled with default values.

Nodes are inserted automatically to match the edges.

source

pub fn map<'a, F, G, N2, E2>( &'a self, node_map: F, edge_map: G, ) -> Graph<N2, E2, Ty, Ix>
where F: FnMut(NodeIndex<Ix>, &'a N) -> N2, G: FnMut(EdgeIndex<Ix>, &'a E) -> E2,

Create a new Graph by mapping node and edge weights to new values.

The resulting graph has the same structure and the same graph indices as self.

source

pub fn filter_map<'a, F, G, N2, E2>( &'a self, node_map: F, edge_map: G, ) -> Graph<N2, E2, Ty, Ix>
where F: FnMut(NodeIndex<Ix>, &'a N) -> Option<N2>, G: FnMut(EdgeIndex<Ix>, &'a E) -> Option<E2>,

Create a new Graph by mapping nodes and edges. A node or edge may be mapped to None to exclude it from the resulting graph.

Nodes are mapped first with the node_map closure, then edge_map is called for the edges that have not had any endpoint removed.

The resulting graph has the structure of a subgraph of the original graph. If no nodes are removed, the resulting graph has compatible node indices; if neither nodes nor edges are removed, the result has the same graph indices as self.

source

pub fn into_edge_type<NewTy>(self) -> Graph<N, E, NewTy, Ix>
where NewTy: EdgeType,

Convert the graph into either undirected or directed. No edge adjustments are done, so you may want to go over the result to remove or add edges.

Computes in O(1) time.

Trait Implementations§

source§

impl<N, E, Ty, Ix> Build for Graph<N, E, Ty, Ix>
where Ty: EdgeType, Ix: IndexType,

source§

fn add_node(&mut self, weight: Self::NodeWeight) -> Self::NodeId

source§

fn add_edge( &mut self, a: Self::NodeId, b: Self::NodeId, weight: Self::EdgeWeight, ) -> Option<Self::EdgeId>

Add a new edge. If parallel edges (duplicate) are not allowed and the edge already exists, return None.
source§

fn update_edge( &mut self, a: Self::NodeId, b: Self::NodeId, weight: Self::EdgeWeight, ) -> Self::EdgeId

Add or update the edge from a to b. Return the id of the affected edge.
source§

impl<N, E, Ty, Ix: IndexType> Clone for Graph<N, E, Ty, Ix>
where N: Clone, E: Clone,

The resulting cloned graph has the same graph indices as self.

source§

fn clone(&self) -> Self

Returns a copy of the value. Read more
source§

fn clone_from(&mut self, rhs: &Self)

Performs copy-assignment from source. Read more
source§

impl<N, E, Ty, Ix> Create for Graph<N, E, Ty, Ix>
where Ty: EdgeType, Ix: IndexType,

source§

fn with_capacity(nodes: usize, edges: usize) -> Self

source§

impl<N, E, Ty, Ix> Data for Graph<N, E, Ty, Ix>
where Ix: IndexType,

§

type NodeWeight = N

§

type EdgeWeight = E

source§

impl<N, E, Ty, Ix> DataMap for Graph<N, E, Ty, Ix>
where Ty: EdgeType, Ix: IndexType,

source§

fn node_weight(&self, id: Self::NodeId) -> Option<&Self::NodeWeight>

source§

fn edge_weight(&self, id: Self::EdgeId) -> Option<&Self::EdgeWeight>

source§

impl<N, E, Ty, Ix> DataMapMut for Graph<N, E, Ty, Ix>
where Ty: EdgeType, Ix: IndexType,

source§

fn node_weight_mut(&mut self, id: Self::NodeId) -> Option<&mut Self::NodeWeight>

source§

fn edge_weight_mut(&mut self, id: Self::EdgeId) -> Option<&mut Self::EdgeWeight>

source§

impl<N, E, Ty, Ix> Debug for Graph<N, E, Ty, Ix>
where N: Debug, E: Debug, Ty: EdgeType, Ix: IndexType,

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl<N, E, Ty, Ix> Default for Graph<N, E, Ty, Ix>
where Ty: EdgeType, Ix: IndexType,

Create a new empty Graph.

source§

fn default() -> Self

Returns the “default value” for a type. Read more
source§

impl<N, E, Ty, Ix> From<Graph<N, E, Ty, Ix>> for StableGraph<N, E, Ty, Ix>
where Ty: EdgeType, Ix: IndexType,

Convert a Graph into a StableGraph

Computes in O(|V| + |E|) time.

The resulting graph has the same node and edge indices as the original graph.

source§

fn from(g: Graph<N, E, Ty, Ix>) -> Self

Converts to this type from the input type.
source§

impl<N, E, Ty, Ix> From<StableGraph<N, E, Ty, Ix>> for Graph<N, E, Ty, Ix>
where Ty: EdgeType, Ix: IndexType,

Convert a StableGraph into a Graph

Computes in O(|V| + |E|) time.

This translates the stable graph into a graph with node and edge indices in a compact interval without holes (like Graphs always are).

Only if the stable graph had no vacancies after deletions (if node bound was equal to node count, and the same for edges), would the resulting graph have the same node and edge indices as the input.

source§

fn from(graph: StableGraph<N, E, Ty, Ix>) -> Self

Converts to this type from the input type.
source§

impl<N, E, Ty, Ix> FromElements for Graph<N, E, Ty, Ix>
where Ty: EdgeType, Ix: IndexType,

source§

fn from_elements<I>(iterable: I) -> Self
where Self: Sized, I: IntoIterator<Item = Element<Self::NodeWeight, Self::EdgeWeight>>,

source§

impl<N, E, Ty, Ix> GetAdjacencyMatrix for Graph<N, E, Ty, Ix>
where Ty: EdgeType, Ix: IndexType,

The adjacency matrix for Graph is a bitmap that’s computed by .adjacency_matrix().

§

type AdjMatrix = FixedBitSet

The associated adjacency matrix type
source§

fn adjacency_matrix(&self) -> FixedBitSet

Create the adjacency matrix
source§

fn is_adjacent( &self, matrix: &FixedBitSet, a: NodeIndex<Ix>, b: NodeIndex<Ix>, ) -> bool

Return true if there is an edge from a to b, false otherwise. Read more
source§

impl<N, E, Ty, Ix> GraphBase for Graph<N, E, Ty, Ix>
where Ix: IndexType,

§

type NodeId = NodeIndex<Ix>

node identifier
§

type EdgeId = EdgeIndex<Ix>

edge identifier
source§

impl<N, E, Ty, Ix> GraphProp for Graph<N, E, Ty, Ix>
where Ty: EdgeType, Ix: IndexType,

§

type EdgeType = Ty

The kind edges in the graph.
source§

fn is_directed(&self) -> bool

source§

impl<N, E, Ty, Ix> Index<EdgeIndex<Ix>> for Graph<N, E, Ty, Ix>
where Ty: EdgeType, Ix: IndexType,

Index the Graph by EdgeIndex to access edge weights.

Panics if the edge doesn’t exist.

§

type Output = E

The returned type after indexing.
source§

fn index(&self, index: EdgeIndex<Ix>) -> &E

Performs the indexing (container[index]) operation. Read more
source§

impl<N, E, Ty, Ix> Index<NodeIndex<Ix>> for Graph<N, E, Ty, Ix>
where Ty: EdgeType, Ix: IndexType,

Index the Graph by NodeIndex to access node weights.

Panics if the node doesn’t exist.

§

type Output = N

The returned type after indexing.
source§

fn index(&self, index: NodeIndex<Ix>) -> &N

Performs the indexing (container[index]) operation. Read more
source§

impl<N, E, Ty, Ix> IndexMut<EdgeIndex<Ix>> for Graph<N, E, Ty, Ix>
where Ty: EdgeType, Ix: IndexType,

Index the Graph by EdgeIndex to access edge weights.

Panics if the edge doesn’t exist.

source§

fn index_mut(&mut self, index: EdgeIndex<Ix>) -> &mut E

Performs the mutable indexing (container[index]) operation. Read more
source§

impl<N, E, Ty, Ix> IndexMut<NodeIndex<Ix>> for Graph<N, E, Ty, Ix>
where Ty: EdgeType, Ix: IndexType,

Index the Graph by NodeIndex to access node weights.

Panics if the node doesn’t exist.

source§

fn index_mut(&mut self, index: NodeIndex<Ix>) -> &mut N

Performs the mutable indexing (container[index]) operation. Read more
source§

impl<'a, N: 'a, E: 'a, Ty, Ix> IntoEdgeReferences for &'a Graph<N, E, Ty, Ix>
where Ty: EdgeType, Ix: IndexType,

source§

impl<'a, N, E, Ty, Ix> IntoEdges for &'a Graph<N, E, Ty, Ix>
where Ty: EdgeType, Ix: IndexType,

§

type Edges = Edges<'a, E, Ty, Ix>

source§

fn edges(self, a: Self::NodeId) -> Self::Edges

source§

impl<'a, N, E, Ty, Ix> IntoEdgesDirected for &'a Graph<N, E, Ty, Ix>
where Ty: EdgeType, Ix: IndexType,

§

type EdgesDirected = Edges<'a, E, Ty, Ix>

source§

fn edges_directed(self, a: Self::NodeId, dir: Direction) -> Self::EdgesDirected

source§

impl<'a, N, E: 'a, Ty, Ix> IntoNeighbors for &'a Graph<N, E, Ty, Ix>
where Ty: EdgeType, Ix: IndexType,

§

type Neighbors = Neighbors<'a, E, Ix>

source§

fn neighbors(self, n: NodeIndex<Ix>) -> Neighbors<'a, E, Ix>

Return an iterator of the neighbors of node a.
source§

impl<'a, N, E: 'a, Ty, Ix> IntoNeighborsDirected for &'a Graph<N, E, Ty, Ix>
where Ty: EdgeType, Ix: IndexType,

§

type NeighborsDirected = Neighbors<'a, E, Ix>

source§

fn neighbors_directed( self, n: NodeIndex<Ix>, d: Direction, ) -> Neighbors<'a, E, Ix>

source§

impl<'a, N, E: 'a, Ty, Ix> IntoNodeIdentifiers for &'a Graph<N, E, Ty, Ix>
where Ty: EdgeType, Ix: IndexType,

source§

impl<'a, N, E, Ty, Ix> IntoNodeReferences for &'a Graph<N, E, Ty, Ix>
where Ty: EdgeType, Ix: IndexType,

source§

impl<N, E, Ty, Ix> NodeCount for Graph<N, E, Ty, Ix>
where Ty: EdgeType, Ix: IndexType,

source§

impl<N, E, Ty, Ix> NodeIndexable for Graph<N, E, Ty, Ix>
where Ty: EdgeType, Ix: IndexType,

source§

fn node_bound(&self) -> usize

Return an upper bound of the node indices in the graph (suitable for the size of a bitmap).
source§

fn to_index(&self, ix: NodeIndex<Ix>) -> usize

Convert a to an integer index.
source§

fn from_index(&self, ix: usize) -> Self::NodeId

Convert i to a node index
source§

impl<N, E, Ty, Ix> Visitable for Graph<N, E, Ty, Ix>
where Ty: EdgeType, Ix: IndexType,

§

type Map = FixedBitSet

The associated map type
source§

fn visit_map(&self) -> FixedBitSet

Create a new visitor map
source§

fn reset_map(&self, map: &mut Self::Map)

Reset the visitor map (and resize to new size of graph if needed)
source§

impl<N, E, Ty, Ix> NodeCompactIndexable for Graph<N, E, Ty, Ix>
where Ty: EdgeType, Ix: IndexType,

Auto Trait Implementations§

§

impl<N, E, Ty, Ix> Freeze for Graph<N, E, Ty, Ix>

§

impl<N, E, Ty, Ix> RefUnwindSafe for Graph<N, E, Ty, Ix>

§

impl<N, E, Ty, Ix> Send for Graph<N, E, Ty, Ix>
where Ty: Send, N: Send, E: Send, Ix: Send,

§

impl<N, E, Ty, Ix> Sync for Graph<N, E, Ty, Ix>
where Ty: Sync, N: Sync, E: Sync, Ix: Sync,

§

impl<N, E, Ty, Ix> Unpin for Graph<N, E, Ty, Ix>
where Ty: Unpin, N: Unpin, E: Unpin, Ix: Unpin,

§

impl<N, E, Ty, Ix> UnwindSafe for Graph<N, E, Ty, Ix>
where Ty: UnwindSafe, N: UnwindSafe, E: UnwindSafe, Ix: UnwindSafe,

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.