Struct smithay_client_toolkit::shell::xdg::XdgPositioner
source · pub struct XdgPositioner(XdgPositioner);
Expand description
A trivial wrapper for an xdg_positioner::XdgPositioner
.
This wrapper calls destroy
on the contained
positioner when it is dropped.
Tuple Fields§
§0: XdgPositioner
Implementations§
source§impl XdgPositioner
impl XdgPositioner
pub fn new( wm_base: &impl ProvidesBoundGlobal<XdgWmBase, { XdgShell::API_VERSION_MAX }>, ) -> Result<Self, GlobalError>
Methods from Deref<Target = XdgPositioner>§
sourcepub fn destroy(&self)
pub fn destroy(&self)
destroy the xdg_positioner object
Notify the compositor that the xdg_positioner will no longer be used.
sourcepub fn set_size(&self, width: i32, height: i32)
pub fn set_size(&self, width: i32, height: i32)
set the size of the to-be positioned rectangle
Set the size of the surface that is to be positioned with the positioner object. The size is in surface-local coordinates and corresponds to the window geometry. See xdg_surface.set_window_geometry.
If a zero or negative size is set the invalid_input error is raised.
sourcepub fn set_anchor_rect(&self, x: i32, y: i32, width: i32, height: i32)
pub fn set_anchor_rect(&self, x: i32, y: i32, width: i32, height: i32)
set the anchor rectangle within the parent surface
Specify the anchor rectangle within the parent surface that the child surface will be placed relative to. The rectangle is relative to the window geometry as defined by xdg_surface.set_window_geometry of the parent surface.
When the xdg_positioner object is used to position a child surface, the anchor rectangle may not extend outside the window geometry of the positioned child’s parent surface.
If a negative size is set the invalid_input error is raised.
sourcepub fn set_anchor(&self, anchor: Anchor)
pub fn set_anchor(&self, anchor: Anchor)
set anchor rectangle anchor
Defines the anchor point for the anchor rectangle. The specified anchor is used derive an anchor point that the child surface will be positioned relative to. If a corner anchor is set (e.g. ‘top_left’ or ‘bottom_right’), the anchor point will be at the specified corner; otherwise, the derived anchor point will be centered on the specified edge, or in the center of the anchor rectangle if no edge is specified.
sourcepub fn set_gravity(&self, gravity: Gravity)
pub fn set_gravity(&self, gravity: Gravity)
set child surface gravity
Defines in what direction a surface should be positioned, relative to the anchor point of the parent surface. If a corner gravity is specified (e.g. ‘bottom_right’ or ‘top_left’), then the child surface will be placed towards the specified gravity; otherwise, the child surface will be centered over the anchor point on any axis that had no gravity specified. If the gravity is not in the ‘gravity’ enum, an invalid_input error is raised.
sourcepub fn set_constraint_adjustment(
&self,
constraint_adjustment: ConstraintAdjustment,
)
pub fn set_constraint_adjustment( &self, constraint_adjustment: ConstraintAdjustment, )
set the adjustment to be done when constrained
Specify how the window should be positioned if the originally intended position caused the surface to be constrained, meaning at least partially outside positioning boundaries set by the compositor. The adjustment is set by constructing a bitmask describing the adjustment to be made when the surface is constrained on that axis.
If no bit for one axis is set, the compositor will assume that the child surface should not change its position on that axis when constrained.
If more than one bit for one axis is set, the order of how adjustments are applied is specified in the corresponding adjustment descriptions.
The default adjustment is none.
sourcepub fn set_offset(&self, x: i32, y: i32)
pub fn set_offset(&self, x: i32, y: i32)
set surface position offset
Specify the surface position offset relative to the position of the anchor on the anchor rectangle and the anchor on the surface. For example if the anchor of the anchor rectangle is at (x, y), the surface has the gravity bottom|right, and the offset is (ox, oy), the calculated surface position will be (x + ox, y + oy). The offset position of the surface is the one used for constraint testing. See set_constraint_adjustment.
An example use case is placing a popup menu on top of a user interface element, while aligning the user interface element of the parent surface with some user interface element placed somewhere in the popup surface.
sourcepub fn set_reactive(&self)
pub fn set_reactive(&self)
continuously reconstrain the surface
When set reactive, the surface is reconstrained if the conditions used for constraining changed, e.g. the parent window moved.
If the conditions changed and the popup was reconstrained, an xdg_popup.configure event is sent with updated geometry, followed by an xdg_surface.configure event.
sourcepub fn set_parent_size(&self, parent_width: i32, parent_height: i32)
pub fn set_parent_size(&self, parent_width: i32, parent_height: i32)
Set the parent window geometry the compositor should use when positioning the popup. The compositor may use this information to determine the future state the popup should be constrained using. If this doesn’t match the dimension of the parent the popup is eventually positioned against, the behavior is undefined.
The arguments are given in the surface-local coordinate space.
sourcepub fn set_parent_configure(&self, serial: u32)
pub fn set_parent_configure(&self, serial: u32)
set parent configure this is a response to
Set the serial of an xdg_surface.configure event this positioner will be used in response to. The compositor may use this information together with set_parent_size to determine what future state the popup should be constrained using.
Trait Implementations§
source§impl Debug for XdgPositioner
impl Debug for XdgPositioner
source§impl Deref for XdgPositioner
impl Deref for XdgPositioner
Auto Trait Implementations§
impl Freeze for XdgPositioner
impl !RefUnwindSafe for XdgPositioner
impl Send for XdgPositioner
impl Sync for XdgPositioner
impl Unpin for XdgPositioner
impl !UnwindSafe for XdgPositioner
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
source§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Box<dyn Trait>
(where Trait: Downcast
) to Box<dyn Any>
. Box<dyn Any>
can
then be further downcast
into Box<ConcreteType>
where ConcreteType
implements Trait
.source§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Rc<Trait>
(where Trait: Downcast
) to Rc<Any>
. Rc<Any>
can then be
further downcast
into Rc<ConcreteType>
where ConcreteType
implements Trait
.source§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
&Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &Any
’s vtable from &Trait
’s.source§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
&mut Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &mut Any
’s vtable from &mut Trait
’s.