Struct script::dom::bindings::import::module::jsapi::PersistentRooted

source ·
#[repr(C)]
pub struct PersistentRooted { pub _address: u8, }
Expand description

A copyable, assignable global GC root type with arbitrary lifetime, an infallible constructor, and automatic unrooting on destruction.

These roots can be used in heap-allocated data structures, so they are not associated with any particular JSContext or stack. They are registered with the JSRuntime itself, without locking. Initialization may take place on construction, or in two phases if the no-argument constructor is called followed by init().

Note that you must not use an PersistentRooted in an object owned by a JS object:

Whenever one object whose lifetime is decided by the GC refers to another such object, that edge must be traced only if the owning JS object is traced. This applies not only to JS objects (which obviously are managed by the GC) but also to C++ objects owned by JS objects.

If you put a PersistentRooted in such a C++ object, that is almost certainly a leak. When a GC begins, the referent of the PersistentRooted is treated as live, unconditionally (because a PersistentRooted is a root), even if the JS object that owns it is unreachable. If there is any path from that referent back to the JS object, then the C++ object containing the PersistentRooted will not be destructed, and the whole blob of objects will not be freed, even if there are no references to them from the outside.

In the context of Firefox, this is a severe restriction: almost everything in Firefox is owned by some JS object or another, so using PersistentRooted in such objects would introduce leaks. For these kinds of edges, Heap or TenuredHeap would be better types. It’s up to the implementor of the type containing Heap or TenuredHeap members to make sure their referents get marked when the object itself is marked.

Fields§

§_address: u8

Trait Implementations§

source§

impl Clone for PersistentRooted

source§

fn clone(&self) -> PersistentRooted

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl Debug for PersistentRooted

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
source§

impl PartialEq for PersistentRooted

source§

fn eq(&self, other: &PersistentRooted) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl Copy for PersistentRooted

source§

impl StructuralPartialEq for PersistentRooted

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> Downcast<T> for T

source§

fn downcast(&self) -> &T

source§

impl<T> Filterable for T

source§

fn filterable( self, filter_name: &'static str, ) -> RequestFilterDataProvider<T, fn(_: DataRequest<'_>) -> bool>

Creates a filterable data provider with the given name for debugging. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T> Instrument for T

source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> IntoEither for T

source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
source§

impl<T> MaybeBoxed<Box<T>> for T

source§

fn maybe_boxed(self) -> Box<T>

Convert
source§

impl<T> MaybeBoxed<T> for T

source§

fn maybe_boxed(self) -> T

Convert
source§

impl<T> Pointable for T

source§

const ALIGN: usize = _

The alignment of pointer.
§

type Init = T

The type for initializers.
source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
source§

impl<T> Same for T

§

type Output = T

Should always be Self
source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<T> Upcast<T> for T

source§

fn upcast(&self) -> Option<&T>

source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

source§

fn vzip(self) -> V

source§

impl<T> WithSubscriber for T

source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
source§

impl<T> ErasedDestructor for T
where T: 'static,

source§

impl<T> MaybeSendSync for T

source§

impl<T> WasmNotSend for T
where T: Send,

source§

impl<T> WasmNotSendSync for T

source§

impl<T> WasmNotSync for T
where T: Sync,