# Trait serde::lib::core::ops::Div

1.0.0 · source ·
``````pub trait Div<Rhs = Self> {
type Output;

// Required method
fn div(self, rhs: Rhs) -> Self::Output;
}``````
Expand description

The division operator `/`.

Note that `Rhs` is `Self` by default, but this is not mandatory.

## Examples

### `Div`idable rational numbers

``````use std::ops::Div;

// By the fundamental theorem of arithmetic, rational numbers in lowest
// terms are unique. So, by keeping `Rational`s in reduced form, we can
// derive `Eq` and `PartialEq`.
#[derive(Debug, Eq, PartialEq)]
struct Rational {
numerator: usize,
denominator: usize,
}

impl Rational {
fn new(numerator: usize, denominator: usize) -> Self {
if denominator == 0 {
panic!("Zero is an invalid denominator!");
}

// Reduce to lowest terms by dividing by the greatest common
// divisor.
let gcd = gcd(numerator, denominator);
Self {
numerator: numerator / gcd,
denominator: denominator / gcd,
}
}
}

impl Div for Rational {
// The division of rational numbers is a closed operation.
type Output = Self;

fn div(self, rhs: Self) -> Self::Output {
if rhs.numerator == 0 {
panic!("Cannot divide by zero-valued `Rational`!");
}

let numerator = self.numerator * rhs.denominator;
let denominator = self.denominator * rhs.numerator;
Self::new(numerator, denominator)
}
}

// Euclid's two-thousand-year-old algorithm for finding the greatest common
// divisor.
fn gcd(x: usize, y: usize) -> usize {
let mut x = x;
let mut y = y;
while y != 0 {
let t = y;
y = x % y;
x = t;
}
x
}

assert_eq!(Rational::new(1, 2), Rational::new(2, 4));
assert_eq!(Rational::new(1, 2) / Rational::new(3, 4),
Rational::new(2, 3));``````

### Dividing vectors by scalars as in linear algebra

``````use std::ops::Div;

struct Scalar { value: f32 }

#[derive(Debug, PartialEq)]
struct Vector { value: Vec<f32> }

impl Div<Scalar> for Vector {
type Output = Self;

fn div(self, rhs: Scalar) -> Self::Output {
Self { value: self.value.iter().map(|v| v / rhs.value).collect() }
}
}

let scalar = Scalar { value: 2f32 };
let vector = Vector { value: vec![2f32, 4f32, 6f32] };
assert_eq!(vector / scalar, Vector { value: vec![1f32, 2f32, 3f32] });``````

## Required Associated Types§

source

#### type Output

The resulting type after applying the `/` operator.

## Required Methods§

source

#### fn div(self, rhs: Rhs) -> Self::Output

Performs the `/` operation.

##### Example
``assert_eq!(12 / 2, 6);``

## Implementors§

source§

§

source§

§

source§

§

source§

§

source§

§

source§

§

source§

§

source§

§

source§

§

source§

§

source§

§

source§

§

source§

§

source§

§

source§

§

source§

§

source§

§

source§

§

source§

§

source§

§

source§

§

source§

§

source§

§

source§

§

source§

§

source§

§

source§

§

source§

§

1.74.0 · source§

§

1.74.0 · source§

§

1.74.0 · source§

§

1.74.0 · source§

§

1.74.0 · source§

§

1.74.0 · source§

§

1.74.0 · source§

§

1.74.0 · source§

§

1.74.0 · source§

§

1.74.0 · source§

§

1.74.0 · source§

§

1.74.0 · source§

§

1.74.0 · source§

§

1.74.0 · source§

§

1.74.0 · source§

§

1.74.0 · source§

§

1.74.0 · source§

§

1.74.0 · source§

§

1.74.0 · source§

§

1.74.0 · source§

§

1.74.0 · source§

§

1.74.0 · source§

§

1.74.0 · source§

§

1.74.0 · source§

§

1.14.0 · source§

§

1.14.0 · source§

§

1.14.0 · source§

§

1.14.0 · source§

§

1.14.0 · source§

§

1.14.0 · source§

§

1.14.0 · source§

§

1.14.0 · source§

§

1.14.0 · source§

§

1.14.0 · source§

§

1.14.0 · source§

§

1.14.0 · source§

§

1.14.0 · source§

§

1.14.0 · source§

§

1.14.0 · source§

§

1.14.0 · source§

§

1.14.0 · source§

§

1.14.0 · source§

§

1.14.0 · source§

§

1.14.0 · source§

§

1.14.0 · source§

§

1.14.0 · source§

§

1.14.0 · source§

§

1.14.0 · source§

§

source§

§

source§

§

source§

### impl Div<i8> for i8

This operation rounds towards zero, truncating any fractional part of the exact result.

#### Panics

This operation will panic if `other == 0` or the division results in overflow.

§

source§

### impl Div<i16> for i16

This operation rounds towards zero, truncating any fractional part of the exact result.

#### Panics

This operation will panic if `other == 0` or the division results in overflow.

§

source§

### impl Div<i32> for i32

This operation rounds towards zero, truncating any fractional part of the exact result.

#### Panics

This operation will panic if `other == 0` or the division results in overflow.

§

source§

### impl Div<i64> for i64

This operation rounds towards zero, truncating any fractional part of the exact result.

#### Panics

This operation will panic if `other == 0` or the division results in overflow.

§

source§

### impl Div<i128> for i128

This operation rounds towards zero, truncating any fractional part of the exact result.

#### Panics

This operation will panic if `other == 0` or the division results in overflow.

§

source§

### impl Div<isize> for isize

This operation rounds towards zero, truncating any fractional part of the exact result.

#### Panics

This operation will panic if `other == 0` or the division results in overflow.

§

source§

### impl Div<u8> for u8

This operation rounds towards zero, truncating any fractional part of the exact result.

#### Panics

This operation will panic if `other == 0`.

§

source§

### impl Div<u16> for u16

This operation rounds towards zero, truncating any fractional part of the exact result.

#### Panics

This operation will panic if `other == 0`.

§

source§

### impl Div<u32> for u32

This operation rounds towards zero, truncating any fractional part of the exact result.

#### Panics

This operation will panic if `other == 0`.

§

1.3.0 · source§

§

source§

### impl Div<u64> for u64

This operation rounds towards zero, truncating any fractional part of the exact result.

#### Panics

This operation will panic if `other == 0`.

§

source§

### impl Div<u128> for u128

This operation rounds towards zero, truncating any fractional part of the exact result.

#### Panics

This operation will panic if `other == 0`.

§

source§

### impl Div<usize> for usize

This operation rounds towards zero, truncating any fractional part of the exact result.

#### Panics

This operation will panic if `other == 0`.

§

1.51.0 · source§

§

1.51.0 · source§

§

1.51.0 · source§

§

1.51.0 · source§

§

1.51.0 · source§

§

1.51.0 · source§

§

1.74.0 · source§

### impl Div<Saturating<i8>> for Saturating<i8>

#### Examples

Basic usage:

``````use std::num::Saturating;

assert_eq!(Saturating(2i8), Saturating(5i8) / Saturating(2));
assert_eq!(Saturating(i8::MAX), Saturating(i8::MAX) / Saturating(1));
assert_eq!(Saturating(i8::MIN), Saturating(i8::MIN) / Saturating(1));``````
``````use std::num::Saturating;

let _ = Saturating(0i8) / Saturating(0);``````
§

1.74.0 · source§

### impl Div<Saturating<i16>> for Saturating<i16>

#### Examples

Basic usage:

``````use std::num::Saturating;

assert_eq!(Saturating(2i16), Saturating(5i16) / Saturating(2));
assert_eq!(Saturating(i16::MAX), Saturating(i16::MAX) / Saturating(1));
assert_eq!(Saturating(i16::MIN), Saturating(i16::MIN) / Saturating(1));``````
``````use std::num::Saturating;

let _ = Saturating(0i16) / Saturating(0);``````
§

1.74.0 · source§

### impl Div<Saturating<i32>> for Saturating<i32>

#### Examples

Basic usage:

``````use std::num::Saturating;

assert_eq!(Saturating(2i32), Saturating(5i32) / Saturating(2));
assert_eq!(Saturating(i32::MAX), Saturating(i32::MAX) / Saturating(1));
assert_eq!(Saturating(i32::MIN), Saturating(i32::MIN) / Saturating(1));``````
``````use std::num::Saturating;

let _ = Saturating(0i32) / Saturating(0);``````
§

1.74.0 · source§

### impl Div<Saturating<i64>> for Saturating<i64>

#### Examples

Basic usage:

``````use std::num::Saturating;

assert_eq!(Saturating(2i64), Saturating(5i64) / Saturating(2));
assert_eq!(Saturating(i64::MAX), Saturating(i64::MAX) / Saturating(1));
assert_eq!(Saturating(i64::MIN), Saturating(i64::MIN) / Saturating(1));``````
``````use std::num::Saturating;

let _ = Saturating(0i64) / Saturating(0);``````
§

1.74.0 · source§

### impl Div<Saturating<i128>> for Saturating<i128>

#### Examples

Basic usage:

``````use std::num::Saturating;

assert_eq!(Saturating(2i128), Saturating(5i128) / Saturating(2));
assert_eq!(Saturating(i128::MAX), Saturating(i128::MAX) / Saturating(1));
assert_eq!(Saturating(i128::MIN), Saturating(i128::MIN) / Saturating(1));``````
``````use std::num::Saturating;

let _ = Saturating(0i128) / Saturating(0);``````
§

1.74.0 · source§

### impl Div<Saturating<isize>> for Saturating<isize>

#### Examples

Basic usage:

``````use std::num::Saturating;

assert_eq!(Saturating(2isize), Saturating(5isize) / Saturating(2));
assert_eq!(Saturating(isize::MAX), Saturating(isize::MAX) / Saturating(1));
assert_eq!(Saturating(isize::MIN), Saturating(isize::MIN) / Saturating(1));``````
``````use std::num::Saturating;

let _ = Saturating(0isize) / Saturating(0);``````
§

1.74.0 · source§

### impl Div<Saturating<u8>> for Saturating<u8>

#### Examples

Basic usage:

``````use std::num::Saturating;

assert_eq!(Saturating(2u8), Saturating(5u8) / Saturating(2));
assert_eq!(Saturating(u8::MAX), Saturating(u8::MAX) / Saturating(1));
assert_eq!(Saturating(u8::MIN), Saturating(u8::MIN) / Saturating(1));``````
``````use std::num::Saturating;

let _ = Saturating(0u8) / Saturating(0);``````
§

1.74.0 · source§

### impl Div<Saturating<u16>> for Saturating<u16>

#### Examples

Basic usage:

``````use std::num::Saturating;

assert_eq!(Saturating(2u16), Saturating(5u16) / Saturating(2));
assert_eq!(Saturating(u16::MAX), Saturating(u16::MAX) / Saturating(1));
assert_eq!(Saturating(u16::MIN), Saturating(u16::MIN) / Saturating(1));``````
``````use std::num::Saturating;

let _ = Saturating(0u16) / Saturating(0);``````
§

1.74.0 · source§

### impl Div<Saturating<u32>> for Saturating<u32>

#### Examples

Basic usage:

``````use std::num::Saturating;

assert_eq!(Saturating(2u32), Saturating(5u32) / Saturating(2));
assert_eq!(Saturating(u32::MAX), Saturating(u32::MAX) / Saturating(1));
assert_eq!(Saturating(u32::MIN), Saturating(u32::MIN) / Saturating(1));``````
``````use std::num::Saturating;

let _ = Saturating(0u32) / Saturating(0);``````
§

1.74.0 · source§

### impl Div<Saturating<u64>> for Saturating<u64>

#### Examples

Basic usage:

``````use std::num::Saturating;

assert_eq!(Saturating(2u64), Saturating(5u64) / Saturating(2));
assert_eq!(Saturating(u64::MAX), Saturating(u64::MAX) / Saturating(1));
assert_eq!(Saturating(u64::MIN), Saturating(u64::MIN) / Saturating(1));``````
``````use std::num::Saturating;

let _ = Saturating(0u64) / Saturating(0);``````
§

1.74.0 · source§

### impl Div<Saturating<u128>> for Saturating<u128>

#### Examples

Basic usage:

``````use std::num::Saturating;

assert_eq!(Saturating(2u128), Saturating(5u128) / Saturating(2));
assert_eq!(Saturating(u128::MAX), Saturating(u128::MAX) / Saturating(1));
assert_eq!(Saturating(u128::MIN), Saturating(u128::MIN) / Saturating(1));``````
``````use std::num::Saturating;

let _ = Saturating(0u128) / Saturating(0);``````
§

1.74.0 · source§

### impl Div<Saturating<usize>> for Saturating<usize>

#### Examples

Basic usage:

``````use std::num::Saturating;

assert_eq!(Saturating(2usize), Saturating(5usize) / Saturating(2));
assert_eq!(Saturating(usize::MAX), Saturating(usize::MAX) / Saturating(1));
assert_eq!(Saturating(usize::MIN), Saturating(usize::MIN) / Saturating(1));``````
``````use std::num::Saturating;

let _ = Saturating(0usize) / Saturating(0);``````
§

1.3.0 · source§

§

1.3.0 · source§

§

1.3.0 · source§

§

1.3.0 · source§

§

1.3.0 · source§

§

1.3.0 · source§

§

1.3.0 · source§

§

1.3.0 · source§

§

1.3.0 · source§

§

1.3.0 · source§

§

1.3.0 · source§

§

1.3.0 · source§

§

source§

§

source§

§

source§

§

source§

§

source§

§

source§

§

source§

§

source§

§

source§

§

source§

§

source§

§

source§

§

source§

§

source§

§

1.74.0 · source§

§

1.74.0 · source§

§

1.74.0 · source§

§

1.74.0 · source§

§

1.74.0 · source§

§

1.74.0 · source§

§

1.74.0 · source§

§

1.74.0 · source§

§

1.74.0 · source§

§

1.74.0 · source§

§

1.74.0 · source§

§

1.74.0 · source§

§

1.14.0 · source§

§

1.14.0 · source§

§

1.14.0 · source§

§

1.14.0 · source§

§

1.14.0 · source§

§

1.14.0 · source§

§

1.14.0 · source§

§

1.14.0 · source§

§

1.14.0 · source§

§

1.14.0 · source§

§

1.14.0 · source§

§

1.14.0 · source§

§

source§

§

source§

§

source§

§

source§

§

source§

§

source§

§

source§

§

source§

§

source§

§

source§

§

source§

§

source§

§

source§

§

source§

§

source§

§