Struct rand_isaac::isaac::IsaacRng

source ·
pub struct IsaacRng(BlockRng<IsaacCore>);
Expand description

A random number generator that uses the ISAAC algorithm.

ISAAC stands for “Indirection, Shift, Accumulate, Add, and Count” which are the principal bitwise operations employed. It is the most advanced of a series of array based random number generator designed by Robert Jenkins in 199612.

ISAAC is notably fast and produces excellent quality random numbers for non-cryptographic applications.

In spite of being designed with cryptographic security in mind, ISAAC hasn’t been stringently cryptanalyzed and thus cryptographers do not not consensually trust it to be secure. When looking for a secure RNG, prefer Hc128Rng from the rand_hc crate instead, which, like ISAAC, is an array-based RNG and one of the stream-ciphers selected the by eSTREAM

In 2006 an improvement to ISAAC was suggested by Jean-Philippe Aumasson, named ISAAC+3. But because the specification is not complete, because there is no good implementation, and because the suggested bias may not exist, it is not implemented here.

§Overview of the ISAAC algorithm:

(in pseudo-code)

Input: a, b, c, s[256] // state
Output: r[256]         // results

mix(a,i) = a ^ a << 13   if i = 0 mod 4
           a ^ a >>  6   if i = 1 mod 4
           a ^ a <<  2   if i = 2 mod 4
           a ^ a >> 16   if i = 3 mod 4

c = c + 1
b = b + c

for i in 0..256 {
    x = s_[i]
    a = f(a,i) + s[i+128 mod 256]
    y = a + b + s[x>>2 mod 256]
    s[i] = y
    b = x + s[y>>10 mod 256]
    r[i] = b
}

Numbers are generated in blocks of 256. This means the function above only runs once every 256 times you ask for a next random number. In all other circumstances the last element of the results array is returned.

ISAAC therefore needs a lot of memory, relative to other non-crypto RNGs. 2 * 256 * 4 = 2 kb to hold the state and results.

This implementation uses BlockRng to implement the RngCore methods.

§References

Tuple Fields§

§0: BlockRng<IsaacCore>

Trait Implementations§

source§

impl Clone for IsaacRng

source§

fn clone(&self) -> IsaacRng

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl Debug for IsaacRng

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl RngCore for IsaacRng

source§

fn next_u32(&mut self) -> u32

Return the next random u32. Read more
source§

fn next_u64(&mut self) -> u64

Return the next random u64. Read more
source§

fn fill_bytes(&mut self, dest: &mut [u8])

Fill dest with random data. Read more
source§

fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error>

Fill dest entirely with random data. Read more
source§

impl SeedableRng for IsaacRng

source§

fn seed_from_u64(seed: u64) -> Self

Create an ISAAC random number generator using an u64 as seed. If seed == 0 this will produce the same stream of random numbers as the reference implementation when used unseeded.

§

type Seed = <IsaacCore as SeedableRng>::Seed

Seed type, which is restricted to types mutably-dereferenceable as u8 arrays (we recommend [u8; N] for some N). Read more
source§

fn from_seed(seed: Self::Seed) -> Self

Create a new PRNG using the given seed. Read more
source§

fn from_rng<S: RngCore>(rng: S) -> Result<Self, Error>

Create a new PRNG seeded from another Rng. Read more
source§

fn from_entropy() -> Self

Creates a new instance of the RNG seeded via getrandom. Read more

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.