core_maths

Trait CoreFloat

source
pub trait CoreFloat: Sized + Copy {
Show 38 methods // Required methods fn floor(self) -> Self; fn ceil(self) -> Self; fn round(self) -> Self; fn trunc(self) -> Self; fn fract(self) -> Self; fn abs(self) -> Self; fn signum(self) -> Self; fn copysign(self, sign: Self) -> Self; fn mul_add(self, a: Self, b: Self) -> Self; fn div_euclid(self, rhs: Self) -> Self; fn rem_euclid(self, rhs: Self) -> Self; fn powi(self, n: i32) -> Self; fn powf(self, n: Self) -> Self; fn sqrt(self) -> Self; fn exp(self) -> Self; fn exp2(self) -> Self; fn ln(self) -> Self; fn log(self, base: Self) -> Self; fn log2(self) -> Self; fn log10(self) -> Self; fn cbrt(self) -> Self; fn hypot(self, other: Self) -> Self; fn sin(self) -> Self; fn cos(self) -> Self; fn tan(self) -> Self; fn asin(self) -> Self; fn acos(self) -> Self; fn atan(self) -> Self; fn atan2(self, other: Self) -> Self; fn exp_m1(self) -> Self; fn ln_1p(self) -> Self; fn sinh(self) -> Self; fn cosh(self) -> Self; fn tanh(self) -> Self; fn asinh(self) -> Self; fn acosh(self) -> Self; fn atanh(self) -> Self; // Provided method fn sin_cos(self) -> (Self, Self) { ... }
}
Expand description

See crate.

Required Methods§

source

fn floor(self) -> Self

Returns the largest integer less than or equal to self.

This implementation uses libm instead of the Rust intrinsic.

§Examples
use core_maths::*;
let f = 3.7_f64;
let g = 3.0_f64;
let h = -3.7_f64;

assert_eq!(CoreFloat::floor(f), 3.0);
assert_eq!(CoreFloat::floor(g), 3.0);
assert_eq!(CoreFloat::floor(h), -4.0);
source

fn ceil(self) -> Self

Returns the smallest integer greater than or equal to self.

This implementation uses libm instead of the Rust intrinsic.

§Examples
use core_maths::*;
let f = 3.01_f64;
let g = 4.0_f64;

assert_eq!(CoreFloat::ceil(f), 4.0);
assert_eq!(CoreFloat::ceil(g), 4.0);
source

fn round(self) -> Self

Returns the nearest integer to self. If a value is half-way between two integers, round away from 0.0.

This implementation uses libm instead of the Rust intrinsic.

§Examples
use core_maths::*;
let f = 3.3_f64;
let g = -3.3_f64;
let h = -3.7_f64;
let i = 3.5_f64;
let j = 4.5_f64;

assert_eq!(CoreFloat::round(f), 3.0);
assert_eq!(CoreFloat::round(g), -3.0);
assert_eq!(CoreFloat::round(h), -4.0);
assert_eq!(CoreFloat::round(i), 4.0);
assert_eq!(CoreFloat::round(j), 5.0);
source

fn trunc(self) -> Self

Returns the integer part of self. This means that non-integer numbers are always truncated towards zero.

This implementation uses libm instead of the Rust intrinsic.

§Examples
use core_maths::*;
let f = 3.7_f64;
let g = 3.0_f64;
let h = -3.7_f64;

assert_eq!(CoreFloat::trunc(f), 3.0);
assert_eq!(CoreFloat::trunc(g), 3.0);
assert_eq!(CoreFloat::trunc(h), -3.0);
source

fn fract(self) -> Self

Returns the fractional part of self.

This implementation uses libm instead of the Rust intrinsic.

§Examples
use core_maths::*;
let x = 3.6_f64;
let y = -3.6_f64;
let abs_difference_x = (CoreFloat::fract(x) - CoreFloat::abs(0.6));
let abs_difference_y = (CoreFloat::fract(y) - CoreFloat::abs(-0.6));

assert!(abs_difference_x < 1e-10);
assert!(abs_difference_y < 1e-10);
source

fn abs(self) -> Self

Computes the absolute value of self.

This implementation uses libm instead of the Rust intrinsic.

§Examples
use core_maths::*;
let x = 3.5_f64;
let y = -3.5_f64;

let abs_difference_x = (CoreFloat::abs(x) - CoreFloat::abs(x));
let abs_difference_y = (CoreFloat::abs(y) - (CoreFloat::abs(-y)));

assert!(abs_difference_x < 1e-10);
assert!(abs_difference_y < 1e-10);

assert!(f64::NAN.abs().is_nan());
source

fn signum(self) -> Self

Returns a number that represents the sign of self.

  • 1.0 if the number is positive, +0.0 or INFINITY
  • -1.0 if the number is negative, -0.0 or NEG_INFINITY
  • NaN if the number is NaN

This method does not use an intrinsic in std, so its code is copied.

§Examples
use core_maths::*;
let f = 3.5_f64;

assert_eq!(CoreFloat::signum(f), 1.0);
assert_eq!(CoreFloat::signum(f64::NEG_INFINITY), -1.0);

assert!(CoreFloat::signum(f64::NAN).is_nan());
source

fn copysign(self, sign: Self) -> Self

Returns a number composed of the magnitude of self and the sign of sign.

Equal to self if the sign of self and sign are the same, otherwise equal to -self. If self is a NaN, then a NaN with the sign bit of sign is returned. Note, however, that conserving the sign bit on NaN across arithmetical operations is not generally guaranteed. See explanation of NaN as a special value for more info.

This implementation uses libm instead of the Rust intrinsic.

§Examples
use core_maths::*;
let f = 3.5_f64;

assert_eq!(CoreFloat::copysign(f, 0.42), 3.5_f64);
assert_eq!(CoreFloat::copysign(f, -0.42), -3.5_f64);
assert_eq!(CoreFloat::copysign(-f, 0.42), 3.5_f64);
assert_eq!(CoreFloat::copysign(-f, -0.42), -3.5_f64);

assert!(CoreFloat::copysign(f64::NAN, 1.0).is_nan());
source

fn mul_add(self, a: Self, b: Self) -> Self

Fused multiply-add. Computes (self * a) + b with only one rounding error, yielding a more accurate result than an unfused multiply-add.

Using mul_add may be more performant than an unfused multiply-add if the target architecture has a dedicated fma CPU instruction. However, this is not always true, and will be heavily dependant on designing algorithms with specific target hardware in mind.

This implementation uses libm instead of the Rust intrinsic.

§Examples
use core_maths::*;
let m = 10.0_f64;
let x = 4.0_f64;
let b = 60.0_f64;

// 100.0
let abs_difference = (CoreFloat::mul_add(m, x, b) - ((m * x) + b)).abs();

assert!(abs_difference < 1e-10);
source

fn div_euclid(self, rhs: Self) -> Self

Calculates Euclidean division, the matching method for rem_euclid.

This computes the integer n such that self = n * rhs + self.rem_euclid(rhs). In other words, the result is self / rhs rounded to the integer n such that self >= n * rhs.

This method does not use an intrinsic in std, so its code is copied.

§Examples
use core_maths::*;
let a: f64 = 7.0;
let b = 4.0;
assert_eq!(CoreFloat::div_euclid(a, b), 1.0); // 7.0 > 4.0 * 1.0
assert_eq!(CoreFloat::div_euclid(-a, b), -2.0); // -7.0 >= 4.0 * -2.0
assert_eq!(CoreFloat::div_euclid(a, -b), -1.0); // 7.0 >= -4.0 * -1.0
assert_eq!(CoreFloat::div_euclid(-a, -b), 2.0); // -7.0 >= -4.0 * 2.0
source

fn rem_euclid(self, rhs: Self) -> Self

Calculates the least nonnegative remainder of self (mod rhs).

In particular, the return value r satisfies 0.0 <= r < rhs.abs() in most cases. However, due to a floating point round-off error it can result in r == rhs.abs(), violating the mathematical definition, if self is much smaller than rhs.abs() in magnitude and self < 0.0. This result is not an element of the function’s codomain, but it is the closest floating point number in the real numbers and thus fulfills the property self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs) approximately.

This method does not use an intrinsic in std, so its code is copied.

§Examples
use core_maths::*;
let a: f64 = 7.0;
let b = 4.0;
assert_eq!(CoreFloat::rem_euclid(a, b), 3.0);
assert_eq!(CoreFloat::rem_euclid(-a, b), 1.0);
assert_eq!(CoreFloat::rem_euclid(a, -b), 3.0);
assert_eq!(CoreFloat::rem_euclid(-a, -b), 1.0);
// limitation due to round-off error
assert!(CoreFloat::rem_euclid(-f64::EPSILON, 3.0) != 0.0);
source

fn powi(self, n: i32) -> Self

Raises a number to an integer power.

Using this function is generally faster than using powf. It might have a different sequence of rounding operations than powf, so the results are not guaranteed to agree.

This method is not available in libm, so it uses a custom implementation.

§Examples
use core_maths::*;
let x = 2.0_f64;
let abs_difference = (CoreFloat::powi(x, 2) - (x * x)).abs();

assert!(abs_difference < 1e-10);
source

fn powf(self, n: Self) -> Self

Raises a number to a floating point power.

This implementation uses libm instead of the Rust intrinsic.

§Examples
use core_maths::*;
let x = 2.0_f64;
let abs_difference = (CoreFloat::powf(x, 2.0) - (x * x)).abs();

assert!(abs_difference < 1e-10);
source

fn sqrt(self) -> Self

Returns the square root of a number.

Returns NaN if self is a negative number other than -0.0.

This implementation uses libm instead of the Rust intrinsic.

§Examples
use core_maths::*;
let positive = 4.0_f64;
let negative = -4.0_f64;
let negative_zero = -0.0_f64;

let abs_difference = (CoreFloat::sqrt(positive) - 2.0).abs();

assert!(abs_difference < 1e-10);
assert!(CoreFloat::sqrt(negative).is_nan());
assert!(CoreFloat::sqrt(negative_zero) == negative_zero);
source

fn exp(self) -> Self

Returns e^(self), (the exponential function).

This implementation uses libm instead of the Rust intrinsic.

§Examples
use core_maths::*;
let one = 1.0_f64;
// e^1
let e = CoreFloat::exp(one);

// ln(e) - 1 == 0
let abs_difference = (e.ln() - 1.0).abs();

assert!(abs_difference < 1e-10);
source

fn exp2(self) -> Self

Returns 2^(self).

This implementation uses libm instead of the Rust intrinsic.

§Examples
use core_maths::*;
let f = 2.0_f64;

// 2^2 - 4 == 0
let abs_difference = (CoreFloat::exp2(f) - 4.0).abs();

assert!(abs_difference < 1e-10);
source

fn ln(self) -> Self

Returns the natural logarithm of the number.

This implementation uses libm instead of the Rust intrinsic.

§Examples
use core_maths::*;
let one = 1.0_f64;
// e^1
let e = one.exp();

// ln(e) - 1 == 0
let abs_difference = (CoreFloat::ln(e) - 1.0).abs();

assert!(abs_difference < 1e-10);
source

fn log(self, base: Self) -> Self

Returns the logarithm of the number with respect to an arbitrary base.

The result might not be correctly rounded owing to implementation details; self.log2() can produce more accurate results for base 2, and self.log10() can produce more accurate results for base 10.

This method does not use an intrinsic in std, so its code is copied.

§Examples
use core_maths::*;
let twenty_five = 25.0_f64;

// log5(25) - 2 == 0
let abs_difference = (CoreFloat::log(twenty_five, 5.0) - 2.0).abs();

assert!(abs_difference < 1e-10);
source

fn log2(self) -> Self

Returns the base 2 logarithm of the number.

This implementation uses libm instead of the Rust intrinsic.

§Examples
use core_maths::*;
let four = 4.0_f64;

// log2(4) - 2 == 0
let abs_difference = (CoreFloat::log2(four) - 2.0).abs();

assert!(abs_difference < 1e-10);
source

fn log10(self) -> Self

Returns the base 10 logarithm of the number.

This implementation uses libm instead of the Rust intrinsic.

§Examples
use core_maths::*;
let hundred = 100.0_f64;

// log10(100) - 2 == 0
let abs_difference = (CoreFloat::log10(hundred) - 2.0).abs();

assert!(abs_difference < 1e-10);
source

fn cbrt(self) -> Self

Returns the cube root of a number.

This implementation uses libm instead of the Rust intrinsic.

§Examples
use core_maths::*;
let x = 8.0_f64;

// x^(1/3) - 2 == 0
let abs_difference = (CoreFloat::cbrt(x) - 2.0).abs();

assert!(abs_difference < 1e-10);
source

fn hypot(self, other: Self) -> Self

Compute the distance between the origin and a point (x, y) on the Euclidean plane. Equivalently, compute the length of the hypotenuse of a right-angle triangle with other sides having length x.abs() and y.abs().

This implementation uses libm instead of the Rust intrinsic.

§Examples
use core_maths::*;
let x = 2.0_f64;
let y = 3.0_f64;

// sqrt(x^2 + y^2)
let abs_difference = (CoreFloat::hypot(x, y) - (x.powi(2) + y.powi(2)).sqrt()).abs();

assert!(abs_difference < 1e-10);
source

fn sin(self) -> Self

Computes the sine of a number (in radians).

This implementation uses libm instead of the Rust intrinsic.

§Examples
use core_maths::*;
let x = std::f64::consts::FRAC_PI_2;

let abs_difference = (CoreFloat::sin(x) - 1.0).abs();

assert!(abs_difference < 1e-10);
source

fn cos(self) -> Self

Computes the cosine of a number (in radians).

This implementation uses libm instead of the Rust intrinsic.

§Examples
use core_maths::*;
let x = 2.0 * std::f64::consts::PI;

let abs_difference = (CoreFloat::cos(x) - 1.0).abs();

assert!(abs_difference < 1e-10);
source

fn tan(self) -> Self

Computes the tangent of a number (in radians).

This implementation uses libm instead of the Rust intrinsic.

§Examples
use core_maths::*;
let x = std::f64::consts::FRAC_PI_4;

let abs_difference = (CoreFloat::tan(x) - 1.0).abs();

assert!(abs_difference < 1e-14);
source

fn asin(self) -> Self

Computes the arcsine of a number. Return value is in radians in the range [-pi/2, pi/2] or NaN if the number is outside the range [-1, 1].

This implementation uses libm instead of the Rust intrinsic.

§Examples
use core_maths::*;
let f = std::f64::consts::FRAC_PI_2;

// asin(sin(pi/2))
let abs_difference = (CoreFloat::asin(f.sin()) - std::f64::consts::FRAC_PI_2).abs();

assert!(abs_difference < 1e-10);
source

fn acos(self) -> Self

Computes the arccosine of a number. Return value is in radians in the range [0, pi] or NaN if the number is outside the range [-1, 1].

This implementation uses libm instead of the Rust intrinsic.

§Examples
use core_maths::*;
let f = std::f64::consts::FRAC_PI_4;

// acos(cos(pi/4))
let abs_difference = (CoreFloat::acos(f.cos()) - std::f64::consts::FRAC_PI_4).abs();

assert!(abs_difference < 1e-10);
source

fn atan(self) -> Self

Computes the arctangent of a number. Return value is in radians in the range [-pi/2, pi/2];

This implementation uses libm instead of the Rust intrinsic.

§Examples
use core_maths::*;
let f = 1.0_f64;

// atan(tan(1))
let abs_difference = (CoreFloat::atan(f.tan()) - 1.0).abs();

assert!(abs_difference < 1e-10);
source

fn atan2(self, other: Self) -> Self

Computes the four quadrant arctangent of self (y) and other (x) in radians.

  • x = 0, y = 0: 0
  • x >= 0: arctan(y/x) -> [-pi/2, pi/2]
  • y >= 0: arctan(y/x) + pi -> (pi/2, pi]
  • y < 0: arctan(y/x) - pi -> (-pi, -pi/2)

This implementation uses libm instead of the Rust intrinsic.

§Examples
use core_maths::*;
// Positive angles measured counter-clockwise
// from positive x axis
// -pi/4 radians (45 deg clockwise)
let x1 = 3.0_f64;
let y1 = -3.0_f64;

// 3pi/4 radians (135 deg counter-clockwise)
let x2 = -3.0_f64;
let y2 = 3.0_f64;

let abs_difference_1 = (CoreFloat::atan2(y1, x1) - (-std::f64::consts::FRAC_PI_4)).abs();
let abs_difference_2 = (CoreFloat::atan2(y2, x2) - (3.0 * std::f64::consts::FRAC_PI_4)).abs();

assert!(abs_difference_1 < 1e-10);
assert!(abs_difference_2 < 1e-10);
source

fn exp_m1(self) -> Self

Returns e^(self) - 1 in a way that is accurate even if the number is close to zero.

This implementation uses libm instead of the Rust intrinsic.

§Examples
use core_maths::*;
let x = 1e-16_f64;

// for very small x, e^x is approximately 1 + x + x^2 / 2
let approx = x + x * x / 2.0;
let abs_difference = (CoreFloat::exp_m1(x) - approx).abs();

assert!(abs_difference < 1e-20);
source

fn ln_1p(self) -> Self

Returns ln(1+n) (natural logarithm) more accurately than if the operations were performed separately.

This implementation uses libm instead of the Rust intrinsic.

§Examples
use core_maths::*;
let x = 1e-16_f64;

// for very small x, ln(1 + x) is approximately x - x^2 / 2
let approx = x - x * x / 2.0;
let abs_difference = (CoreFloat::ln_1p(x) - approx).abs();

assert!(abs_difference < 1e-20);
source

fn sinh(self) -> Self

Hyperbolic sine function.

This implementation uses libm instead of the Rust intrinsic.

§Examples
use core_maths::*;
let e = std::f64::consts::E;
let x = 1.0_f64;

let f = CoreFloat::sinh(x);
// Solving sinh() at 1 gives `(e^2-1)/(2e)`
let g = ((e * e) - 1.0) / (2.0 * e);
let abs_difference = (f - g).abs();

assert!(abs_difference < 1e-10);
source

fn cosh(self) -> Self

Hyperbolic cosine function.

This implementation uses libm instead of the Rust intrinsic.

§Examples
use core_maths::*;
let e = std::f64::consts::E;
let x = 1.0_f64;
let f = CoreFloat::cosh(x);
// Solving cosh() at 1 gives this result
let g = ((e * e) + 1.0) / (2.0 * e);
let abs_difference = (f - g).abs();

// Same result
assert!(abs_difference < 1.0e-10);
source

fn tanh(self) -> Self

Hyperbolic tangent function.

This implementation uses libm instead of the Rust intrinsic.

§Examples
use core_maths::*;
let e = std::f64::consts::E;
let x = 1.0_f64;

let f = CoreFloat::tanh(x);
// Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
let g = (1.0 - e.powi(-2)) / (1.0 + e.powi(-2));
let abs_difference = (f - g).abs();

assert!(abs_difference < 1.0e-10);
source

fn asinh(self) -> Self

Inverse hyperbolic sine function.

This method does not use an intrinsic in std, so its code is copied.

§Examples
use core_maths::*;
let x = 1.0_f64;
let f = CoreFloat::asinh(x.sinh());

let abs_difference = (f - x).abs();

assert!(abs_difference < 1.0e-10);
source

fn acosh(self) -> Self

Inverse hyperbolic cosine function.

This method does not use an intrinsic in std, so its code is copied.

§Examples
use core_maths::*;
let x = 1.0_f64;
let f = CoreFloat::acosh(x.cosh());

let abs_difference = (f - x).abs();

assert!(abs_difference < 1.0e-10);
source

fn atanh(self) -> Self

Inverse hyperbolic tangent function.

This method does not use an intrinsic in std, so its code is copied.

§Examples
use core_maths::*;
let e = std::f64::consts::E;
let f = CoreFloat::atanh(e.tanh());

let abs_difference = (f - e).abs();

assert!(abs_difference < 1.0e-10);

Provided Methods§

source

fn sin_cos(self) -> (Self, Self)

Simultaneously computes the sine and cosine of the number, x. Returns (sin(x), cos(x)).

This implementation uses libm instead of the Rust intrinsic.

§Examples
use core_maths::*;
let x = std::f64::consts::FRAC_PI_4;
let f = CoreFloat::sin_cos(x);

let abs_difference_0 = (f.0 - x.sin()).abs();
let abs_difference_1 = (f.1 - x.cos()).abs();

assert!(abs_difference_0 < 1e-10);
assert!(abs_difference_1 < 1e-10);

Object Safety§

This trait is not object safe.

Implementations on Foreign Types§

source§

impl CoreFloat for f32

source§

fn floor(self) -> Self

source§

fn ceil(self) -> Self

source§

fn round(self) -> Self

source§

fn trunc(self) -> Self

source§

fn fract(self) -> Self

source§

fn abs(self) -> Self

source§

fn signum(self) -> Self

source§

fn copysign(self, sign: Self) -> Self

source§

fn mul_add(self, a: Self, b: Self) -> Self

source§

fn div_euclid(self, rhs: Self) -> Self

source§

fn rem_euclid(self, rhs: Self) -> Self

source§

fn powi(self, exp: i32) -> Self

source§

fn powf(self, n: Self) -> Self

source§

fn sqrt(self) -> Self

source§

fn exp(self) -> Self

source§

fn exp2(self) -> Self

source§

fn ln(self) -> Self

source§

fn log(self, base: Self) -> Self

source§

fn log2(self) -> Self

source§

fn log10(self) -> Self

source§

fn cbrt(self) -> Self

source§

fn hypot(self, other: Self) -> Self

source§

fn sin(self) -> Self

source§

fn cos(self) -> Self

source§

fn tan(self) -> Self

source§

fn asin(self) -> Self

source§

fn acos(self) -> Self

source§

fn atan(self) -> Self

source§

fn atan2(self, other: Self) -> Self

source§

fn exp_m1(self) -> Self

source§

fn ln_1p(self) -> Self

source§

fn sinh(self) -> Self

source§

fn cosh(self) -> Self

source§

fn tanh(self) -> Self

source§

fn asinh(self) -> Self

source§

fn acosh(self) -> Self

source§

fn atanh(self) -> Self

source§

impl CoreFloat for f64

source§

fn floor(self) -> Self

source§

fn ceil(self) -> Self

source§

fn round(self) -> Self

source§

fn trunc(self) -> Self

source§

fn fract(self) -> Self

source§

fn abs(self) -> Self

source§

fn signum(self) -> Self

source§

fn copysign(self, sign: Self) -> Self

source§

fn mul_add(self, a: Self, b: Self) -> Self

source§

fn div_euclid(self, rhs: Self) -> Self

source§

fn rem_euclid(self, rhs: Self) -> Self

source§

fn powi(self, exp: i32) -> Self

source§

fn powf(self, n: Self) -> Self

source§

fn sqrt(self) -> Self

source§

fn exp(self) -> Self

source§

fn exp2(self) -> Self

source§

fn ln(self) -> Self

source§

fn log(self, base: Self) -> Self

source§

fn log2(self) -> Self

source§

fn log10(self) -> Self

source§

fn cbrt(self) -> Self

source§

fn hypot(self, other: Self) -> Self

source§

fn sin(self) -> Self

source§

fn cos(self) -> Self

source§

fn tan(self) -> Self

source§

fn asin(self) -> Self

source§

fn acos(self) -> Self

source§

fn atan(self) -> Self

source§

fn atan2(self, other: Self) -> Self

source§

fn exp_m1(self) -> Self

source§

fn ln_1p(self) -> Self

source§

fn sinh(self) -> Self

source§

fn cosh(self) -> Self

source§

fn tanh(self) -> Self

source§

fn asinh(self) -> Self

source§

fn acosh(self) -> Self

source§

fn atanh(self) -> Self

Implementors§