#[non_exhaustive]
pub enum Event { RelativeMotion { utime_hi: u32, utime_lo: u32, dx: f64, dy: f64, dx_unaccel: f64, dy_unaccel: f64, }, }

Variants (Non-exhaustive)§

This enum is marked as non-exhaustive
Non-exhaustive enums could have additional variants added in future. Therefore, when matching against variants of non-exhaustive enums, an extra wildcard arm must be added to account for any future variants.
§

RelativeMotion

Fields

§utime_hi: u32
§utime_lo: u32
§dx: f64
§dy: f64
§dx_unaccel: f64
§dy_unaccel: f64

relative pointer motion

Relative x/y pointer motion from the pointer of the seat associated with this object.

A relative motion is in the same dimension as regular wl_pointer motion events, except they do not represent an absolute position. For example, moving a pointer from (x, y) to (x’, y’) would have the equivalent relative motion (x’ - x, y’ - y). If a pointer motion caused the absolute pointer position to be clipped by for example the edge of the monitor, the relative motion is unaffected by the clipping and will represent the unclipped motion.

This event also contains non-accelerated motion deltas. The non-accelerated delta is, when applicable, the regular pointer motion delta as it was before having applied motion acceleration and other transformations such as normalization.

Note that the non-accelerated delta does not represent ‘raw’ events as they were read from some device. Pointer motion acceleration is device- and configuration-specific and non-accelerated deltas and accelerated deltas may have the same value on some devices.

Relative motions are not coupled to wl_pointer.motion events, and can be sent in combination with such events, but also independently. There may also be scenarios where wl_pointer.motion is sent, but there is no relative motion. The order of an absolute and relative motion event originating from the same physical motion is not guaranteed.

If the client needs button events or focus state, it can receive them from a wl_pointer object of the same seat that the wp_relative_pointer object is associated with.

Trait Implementations§

source§

impl Debug for Event

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl MessageGroup for Event

source§

const MESSAGES: &'static [MessageDesc] = _

Wire representation of this MessageGroup
§

type Map = ProxyMap

The wrapper type for ObjectMap allowing the mapping of Object and NewId arguments to the object map during parsing.
source§

fn is_destructor(&self) -> bool

Whether this message is a destructor Read more
source§

fn opcode(&self) -> u16

The opcode of this message
source§

fn since(&self) -> u32

The minimal object version for which this message exists
source§

fn child<Meta: ObjectMetadata>( opcode: u16, version: u32, meta: &Meta ) -> Option<Object<Meta>>

Retrieve the child Object associated with this message if any
source§

fn from_raw(msg: Message, map: &mut Self::Map) -> Result<Self, ()>

Construct a message from its raw representation
source§

fn into_raw(self, sender_id: u32) -> Message

Turn this message into its raw representation
source§

unsafe fn from_raw_c( obj: *mut c_void, opcode: u32, args: *const wl_argument ) -> Result<Event, ()>

Construct a message of this group from its C representation Read more
source§

fn as_raw_c_in<F, T>(self, f: F) -> Twhere F: FnOnce(u32, &mut [wl_argument]) -> T,

Build a C representation of this message Read more

Auto Trait Implementations§

§

impl RefUnwindSafe for Event

§

impl Send for Event

§

impl Sync for Event

§

impl Unpin for Event

§

impl UnwindSafe for Event

Blanket Implementations§

source§

impl<T> Any for Twhere T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for Twhere T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for Twhere T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for Twhere U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T, U> TryFrom<U> for Twhere U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for Twhere U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.