vello_common/strip.rs
1// Copyright 2025 the Vello Authors
2// SPDX-License-Identifier: Apache-2.0 OR MIT
3
4//! Rendering strips.
5
6use crate::flatten::Line;
7use crate::peniko::Fill;
8use crate::tile::{Tile, Tiles};
9use crate::util::f32_to_u8;
10use alloc::vec::Vec;
11use fearless_simd::*;
12
13/// A strip.
14#[derive(Debug, Clone, Copy)]
15pub struct Strip {
16 /// The x coordinate of the strip, in user coordinates.
17 pub x: u16,
18 /// The y coordinate of the strip, in user coordinates.
19 pub y: u16,
20 /// The index into the alpha buffer.
21 pub alpha_idx: u32,
22 /// The winding number at the start of the strip.
23 pub winding: i32,
24}
25
26impl Strip {
27 /// Return the y coordinate of the strip, in strip units.
28 pub fn strip_y(&self) -> u16 {
29 self.y / Tile::HEIGHT
30 }
31}
32
33/// Render the tiles stored in `tiles` into the strip and alpha buffer.
34/// The strip buffer will be cleared in the beginning.
35pub fn render(
36 level: Level,
37 tiles: &Tiles,
38 strip_buf: &mut Vec<Strip>,
39 alpha_buf: &mut Vec<u8>,
40 fill_rule: Fill,
41 anti_aliasing: bool,
42 lines: &[Line],
43) {
44 render_dispatch(
45 level,
46 tiles,
47 strip_buf,
48 alpha_buf,
49 fill_rule,
50 anti_aliasing,
51 lines,
52 );
53}
54
55simd_dispatch!(render_dispatch(
56 level,
57 tiles: &Tiles,
58 strip_buf: &mut Vec<Strip>,
59 alpha_buf: &mut Vec<u8>,
60 fill_rule: Fill,
61 anti_aliasing: bool,
62 lines: &[Line],
63) = render_impl);
64
65fn render_impl<S: Simd>(
66 s: S,
67 tiles: &Tiles,
68 strip_buf: &mut Vec<Strip>,
69 alpha_buf: &mut Vec<u8>,
70 fill_rule: Fill,
71 anti_aliasing: bool,
72 lines: &[Line],
73) {
74 strip_buf.clear();
75
76 if tiles.is_empty() {
77 return;
78 }
79
80 // The accumulated tile winding delta. A line that crosses the top edge of a tile
81 // increments the delta if the line is directed upwards, and decrements it if goes
82 // downwards. Horizontal lines leave it unchanged.
83 let mut winding_delta: i32 = 0;
84
85 // The previous tile visited.
86 let mut prev_tile = *tiles.get(0);
87 // The accumulated (fractional) winding of the tile-sized location we're currently at.
88 // Note multiple tiles can be at the same location.
89 // Note that we are also implicitly assuming here that the tile height exactly fits into a
90 // SIMD vector (i.e. 128 bits).
91 let mut location_winding = [f32x4::splat(s, 0.0); Tile::WIDTH as usize];
92 // The accumulated (fractional) windings at this location's right edge. When we move to the
93 // next location, this is splatted to that location's starting winding.
94 let mut accumulated_winding = f32x4::splat(s, 0.0);
95
96 /// A special tile to keep the logic below simple.
97 const SENTINEL: Tile = Tile::new(u16::MAX, u16::MAX, 0, false);
98
99 // The strip we're building.
100 let mut strip = Strip {
101 x: prev_tile.x * Tile::WIDTH,
102 y: prev_tile.y * Tile::HEIGHT,
103 alpha_idx: alpha_buf.len() as u32,
104 winding: 0,
105 };
106
107 for (tile_idx, tile) in tiles.iter().copied().chain([SENTINEL]).enumerate() {
108 let line = lines[tile.line_idx() as usize];
109 let tile_left_x = f32::from(tile.x) * f32::from(Tile::WIDTH);
110 let tile_top_y = f32::from(tile.y) * f32::from(Tile::HEIGHT);
111 let p0_x = line.p0.x - tile_left_x;
112 let p0_y = line.p0.y - tile_top_y;
113 let p1_x = line.p1.x - tile_left_x;
114 let p1_y = line.p1.y - tile_top_y;
115
116 // Push out the winding as an alpha mask when we move to the next location (i.e., a tile
117 // without the same location).
118 if !prev_tile.same_loc(&tile) {
119 match fill_rule {
120 Fill::NonZero => {
121 let p1 = f32x4::splat(s, 0.5);
122 let p2 = f32x4::splat(s, 255.0);
123
124 #[expect(clippy::needless_range_loop, reason = "dimension clarity")]
125 for x in 0..Tile::WIDTH as usize {
126 let area = location_winding[x];
127 let coverage = area.abs();
128 let mulled = p1.madd(coverage, p2);
129 // Note that we are not storing the location winding here but the actual
130 // alpha value as f32, so we reuse the variable as a temporary storage.
131 // Also note that we need the `min` here because the winding can be > 1
132 // and thus the calculated alpha value need to be clamped to 255.
133 location_winding[x] = mulled.min(p2);
134 }
135 }
136 Fill::EvenOdd => {
137 let p1 = f32x4::splat(s, 0.5);
138 let p2 = f32x4::splat(s, -2.0);
139 let p3 = f32x4::splat(s, 255.0);
140
141 #[expect(clippy::needless_range_loop, reason = "dimension clarity")]
142 for x in 0..Tile::WIDTH as usize {
143 let area = location_winding[x];
144 let im1 = p1.madd(area, p1).floor();
145 let coverage = area.madd(p2, im1).abs();
146 let mulled = p1.madd(p3, coverage);
147 // TODO: It is possible that, unlike for `NonZero`, we don't need the `min`
148 // here.
149 location_winding[x] = mulled.min(p3);
150 }
151 }
152 };
153
154 let p1 = s.combine_f32x4(location_winding[0], location_winding[1]);
155 let p2 = s.combine_f32x4(location_winding[2], location_winding[3]);
156
157 let mut u8_vals = f32_to_u8(s.combine_f32x8(p1, p2));
158
159 if !anti_aliasing {
160 u8_vals = s.select_u8x16(
161 u8_vals.simd_ge(u8x16::splat(s, 128)),
162 u8x16::splat(s, 255),
163 u8x16::splat(s, 0),
164 );
165 }
166
167 alpha_buf.extend_from_slice(&u8_vals.val);
168
169 #[expect(clippy::needless_range_loop, reason = "dimension clarity")]
170 for x in 0..Tile::WIDTH as usize {
171 location_winding[x] = accumulated_winding;
172 }
173 }
174
175 // Push out the strip if we're moving to a next strip.
176 if !prev_tile.same_loc(&tile) && !prev_tile.prev_loc(&tile) {
177 debug_assert_eq!(
178 (prev_tile.x + 1) * Tile::WIDTH - strip.x,
179 ((alpha_buf.len() - strip.alpha_idx as usize) / usize::from(Tile::HEIGHT)) as u16,
180 "The number of columns written to the alpha buffer should equal the number of columns spanned by this strip."
181 );
182 strip_buf.push(strip);
183
184 let is_sentinel = tile_idx == tiles.len() as usize;
185 if !prev_tile.same_row(&tile) {
186 // Emit a final strip in the row if there is non-zero winding for the sparse fill,
187 // or unconditionally if we've reached the sentinel tile to end the path (the
188 // `alpha_idx` field is used for width calculations).
189 if winding_delta != 0 || is_sentinel {
190 strip_buf.push(Strip {
191 x: u16::MAX,
192 y: prev_tile.y * Tile::HEIGHT,
193 alpha_idx: alpha_buf.len() as u32,
194 winding: winding_delta,
195 });
196 }
197
198 winding_delta = 0;
199 accumulated_winding = f32x4::splat(s, 0.0);
200
201 #[expect(clippy::needless_range_loop, reason = "dimension clarity")]
202 for x in 0..Tile::WIDTH as usize {
203 location_winding[x] = accumulated_winding;
204 }
205 }
206
207 if is_sentinel {
208 break;
209 }
210
211 strip = Strip {
212 x: tile.x * Tile::WIDTH,
213 y: tile.y * Tile::HEIGHT,
214 alpha_idx: alpha_buf.len() as u32,
215 winding: winding_delta,
216 };
217 // Note: this fill is mathematically not necessary. It provides a way to reduce
218 // accumulation of float rounding errors.
219 accumulated_winding = f32x4::splat(s, winding_delta as f32);
220 }
221 prev_tile = tile;
222
223 // TODO: horizontal geometry has no impact on winding. This branch will be removed when
224 // horizontal geometry is culled at the tile-generation stage.
225 if p0_y == p1_y {
226 continue;
227 }
228
229 // Lines moving upwards (in a y-down coordinate system) add to winding; lines moving
230 // downwards subtract from winding.
231 let sign = (p0_y - p1_y).signum();
232
233 // Calculate winding / pixel area coverage.
234 //
235 // Conceptually, horizontal rays are shot from left to right. Every time the ray crosses a
236 // line that is directed upwards (decreasing `y`), the winding is incremented. Every time
237 // the ray crosses a line moving downwards (increasing `y`), the winding is decremented.
238 // The fractional area coverage of a pixel is the integral of the winding within it.
239 //
240 // Practically, to calculate this, each pixel is considered individually, and we determine
241 // whether the line moves through this pixel. The line's y-delta within this pixel is
242 // accumulated and added to the area coverage of pixels to the right. Within the pixel
243 // itself, the area to the right of the line segment forms a trapezoid (or a triangle in
244 // the degenerate case). The area of this trapezoid is added to the pixel's area coverage.
245 //
246 // For example, consider the following pixel square, with a line indicated by asterisks
247 // starting inside the pixel and crossing its bottom edge. The area covered is the
248 // trapezoid on the bottom-right enclosed by the line and the pixel square. The area is
249 // positive if the line moves down, and negative otherwise.
250 //
251 // __________________
252 // | |
253 // | *------|
254 // | * |
255 // | * |
256 // | * |
257 // | * |
258 // | * |
259 // |___*____________|
260 // *
261 // *
262
263 let (line_top_y, line_top_x, line_bottom_y, line_bottom_x) = if p0_y < p1_y {
264 (p0_y, p0_x, p1_y, p1_x)
265 } else {
266 (p1_y, p1_x, p0_y, p0_x)
267 };
268
269 let (line_left_x, line_left_y, line_right_x) = if p0_x < p1_x {
270 (p0_x, p0_y, p1_x)
271 } else {
272 (p1_x, p1_y, p0_x)
273 };
274
275 let y_slope = (line_bottom_y - line_top_y) / (line_bottom_x - line_top_x);
276 let x_slope = 1. / y_slope;
277
278 winding_delta += sign as i32 * i32::from(tile.winding());
279
280 // TODO: this should be removed when out-of-viewport tiles are culled at the
281 // tile-generation stage. That requires calculating and forwarding winding to strip
282 // generation.
283 if tile.x == 0 && line_left_x < 0. {
284 let (ymin, ymax) = if line.p0.x == line.p1.x {
285 (line_top_y, line_bottom_y)
286 } else {
287 let line_viewport_left_y = (line_top_y - line_top_x * y_slope)
288 .max(line_top_y)
289 .min(line_bottom_y);
290
291 (
292 f32::min(line_left_y, line_viewport_left_y),
293 f32::max(line_left_y, line_viewport_left_y),
294 )
295 };
296
297 let ymin: f32x4<_> = ymin.simd_into(s);
298 let ymax: f32x4<_> = ymax.simd_into(s);
299
300 let px_top_y: f32x4<_> = [0.0, 1.0, 2.0, 3.0].simd_into(s);
301 let px_bottom_y = 1.0 + px_top_y;
302 let ymin = px_top_y.max(ymin);
303 let ymax = px_bottom_y.min(ymax);
304 let h = (ymax - ymin).max(0.0);
305 accumulated_winding = accumulated_winding.madd(sign, h);
306 for x_idx in 0..Tile::WIDTH {
307 location_winding[x_idx as usize] = location_winding[x_idx as usize].madd(sign, h);
308 }
309
310 if line_right_x < 0. {
311 // Early exit, as no part of the line is inside the tile.
312 continue;
313 }
314 }
315
316 let line_top_y = f32x4::splat(s, line_top_y);
317 let line_bottom_y = f32x4::splat(s, line_bottom_y);
318
319 let y_idx = f32x4::from_slice(s, &[0.0, 1.0, 2.0, 3.0]);
320 let px_top_y = y_idx;
321 let px_bottom_y = 1. + y_idx;
322
323 let ymin = line_top_y.max(px_top_y);
324 let ymax = line_bottom_y.min(px_bottom_y);
325
326 let mut acc = f32x4::splat(s, 0.0);
327
328 for x_idx in 0..Tile::WIDTH {
329 let x_idx_s = f32x4::splat(s, x_idx as f32);
330 let px_left_x = x_idx_s;
331 let px_right_x = 1.0 + x_idx_s;
332
333 // The y-coordinate of the intersections between the line and the pixel's left and
334 // right edges respectively.
335 //
336 // There is some subtlety going on here: `y_slope` will usually be finite, but will
337 // be `inf` for purely vertical lines (`p0_x == p1_x`).
338 //
339 // In the case of `inf`, the resulting slope calculation will be `-inf` or `inf`
340 // depending on whether the pixel edge is left or right of the line, respectively
341 // (from the viewport's coordinate system perspective). The `min` and `max`
342 // y-clamping logic generalizes nicely, as a pixel edge to the left of the line is
343 // clamped to `ymin`, and a pixel edge to the right is clamped to `ymax`.
344 //
345 // In the special case where a vertical line and pixel edge are at the exact same
346 // x-position (collinear), the line belongs to the pixel on whose _left_ edge it is
347 // situated. The resulting slope calculation for the edge the line is situated on
348 // will be NaN, as `0 * inf` results in NaN. This is true for both the left and
349 // right edge. In both cases, the call to `f32::max` will set this to `ymin`.
350 let line_px_left_y = line_top_y
351 .madd(px_left_x - line_top_x, y_slope)
352 .max_precise(ymin)
353 .min_precise(ymax);
354 let line_px_right_y = line_top_y
355 .madd(px_right_x - line_top_x, y_slope)
356 .max_precise(ymin)
357 .min_precise(ymax);
358
359 // `x_slope` is always finite, as horizontal geometry is elided.
360 let line_px_left_yx =
361 f32x4::splat(s, line_top_x).madd(line_px_left_y - line_top_y, x_slope);
362 let line_px_right_yx =
363 f32x4::splat(s, line_top_x).madd(line_px_right_y - line_top_y, x_slope);
364 let h = (line_px_right_y - line_px_left_y).abs();
365
366 // The trapezoidal area enclosed between the line and the right edge of the pixel
367 // square.
368 let area = 0.5 * h * (2. * px_right_x - line_px_right_yx - line_px_left_yx);
369 location_winding[x_idx as usize] =
370 location_winding[x_idx as usize] + acc.madd(sign, area);
371 acc = acc.madd(sign, h);
372 }
373
374 accumulated_winding = accumulated_winding + acc;
375 }
376}