1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
use fmt;
use sync::atomic::{AtomicUsize, Ordering};
use sync::{mutex, MutexGuard, PoisonError};
use sys_common::condvar as sys;
use sys_common::mutex as sys_mutex;
use sys_common::poison::{self, LockResult};
use time::{Duration, Instant};

/// A type indicating whether a timed wait on a condition variable returned
/// due to a time out or not.
///
/// It is returned by the [`wait_timeout`] method.
///
/// [`wait_timeout`]: struct.Condvar.html#method.wait_timeout
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
#[stable(feature = "wait_timeout", since = "1.5.0")]
pub struct WaitTimeoutResult(bool);

impl WaitTimeoutResult {
    /// Returns whether the wait was known to have timed out.
    ///
    /// # Examples
    ///
    /// This example spawns a thread which will update the boolean value and
    /// then wait 100 milliseconds before notifying the condvar.
    ///
    /// The main thread will wait with a timeout on the condvar and then leave
    /// once the boolean has been updated and notified.
    ///
    /// ```
    /// use std::sync::{Arc, Mutex, Condvar};
    /// use std::thread;
    /// use std::time::Duration;
    ///
    /// let pair = Arc::new((Mutex::new(false), Condvar::new()));
    /// let pair2 = pair.clone();
    ///
    /// thread::spawn(move|| {
    ///     let &(ref lock, ref cvar) = &*pair2;
    ///
    ///     // Let's wait 20 milliseconds before notifying the condvar.
    ///     thread::sleep(Duration::from_millis(20));
    ///
    ///     let mut started = lock.lock().unwrap();
    ///     // We update the boolean value.
    ///     *started = true;
    ///     cvar.notify_one();
    /// });
    ///
    /// // Wait for the thread to start up.
    /// let &(ref lock, ref cvar) = &*pair;
    /// let mut started = lock.lock().unwrap();
    /// loop {
    ///     // Let's put a timeout on the condvar's wait.
    ///     let result = cvar.wait_timeout(started, Duration::from_millis(10)).unwrap();
    ///     // 10 milliseconds have passed, or maybe the value changed!
    ///     started = result.0;
    ///     if *started == true {
    ///         // We received the notification and the value has been updated, we can leave.
    ///         break
    ///     }
    /// }
    /// ```
    #[stable(feature = "wait_timeout", since = "1.5.0")]
    pub fn timed_out(&self) -> bool {
        self.0
    }
}

/// A Condition Variable
///
/// Condition variables represent the ability to block a thread such that it
/// consumes no CPU time while waiting for an event to occur. Condition
/// variables are typically associated with a boolean predicate (a condition)
/// and a mutex. The predicate is always verified inside of the mutex before
/// determining that a thread must block.
///
/// Functions in this module will block the current **thread** of execution and
/// are bindings to system-provided condition variables where possible. Note
/// that this module places one additional restriction over the system condition
/// variables: each condvar can be used with precisely one mutex at runtime. Any
/// attempt to use multiple mutexes on the same condition variable will result
/// in a runtime panic. If this is not desired, then the unsafe primitives in
/// `sys` do not have this restriction but may result in undefined behavior.
///
/// # Examples
///
/// ```
/// use std::sync::{Arc, Mutex, Condvar};
/// use std::thread;
///
/// let pair = Arc::new((Mutex::new(false), Condvar::new()));
/// let pair2 = pair.clone();
///
/// // Inside of our lock, spawn a new thread, and then wait for it to start.
/// thread::spawn(move|| {
///     let &(ref lock, ref cvar) = &*pair2;
///     let mut started = lock.lock().unwrap();
///     *started = true;
///     // We notify the condvar that the value has changed.
///     cvar.notify_one();
/// });
///
/// // Wait for the thread to start up.
/// let &(ref lock, ref cvar) = &*pair;
/// let mut started = lock.lock().unwrap();
/// while !*started {
///     started = cvar.wait(started).unwrap();
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Condvar {
    inner: Box<sys::Condvar>,
    mutex: AtomicUsize,
}

impl Condvar {
    /// Creates a new condition variable which is ready to be waited on and
    /// notified.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::Condvar;
    ///
    /// let condvar = Condvar::new();
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn new() -> Condvar {
        let mut c = Condvar {
            inner: box sys::Condvar::new(),
            mutex: AtomicUsize::new(0),
        };
        unsafe {
            c.inner.init();
        }
        c
    }

    /// Blocks the current thread until this condition variable receives a
    /// notification.
    ///
    /// This function will atomically unlock the mutex specified (represented by
    /// `guard`) and block the current thread. This means that any calls
    /// to [`notify_one`] or [`notify_all`] which happen logically after the
    /// mutex is unlocked are candidates to wake this thread up. When this
    /// function call returns, the lock specified will have been re-acquired.
    ///
    /// Note that this function is susceptible to spurious wakeups. Condition
    /// variables normally have a boolean predicate associated with them, and
    /// the predicate must always be checked each time this function returns to
    /// protect against spurious wakeups.
    ///
    /// # Errors
    ///
    /// This function will return an error if the mutex being waited on is
    /// poisoned when this thread re-acquires the lock. For more information,
    /// see information about [poisoning] on the [`Mutex`] type.
    ///
    /// # Panics
    ///
    /// This function will [`panic!`] if it is used with more than one mutex
    /// over time. Each condition variable is dynamically bound to exactly one
    /// mutex to ensure defined behavior across platforms. If this functionality
    /// is not desired, then unsafe primitives in `sys` are provided.
    ///
    /// [`notify_one`]: #method.notify_one
    /// [`notify_all`]: #method.notify_all
    /// [poisoning]: ../sync/struct.Mutex.html#poisoning
    /// [`Mutex`]: ../sync/struct.Mutex.html
    /// [`panic!`]: ../../std/macro.panic.html
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::{Arc, Mutex, Condvar};
    /// use std::thread;
    ///
    /// let pair = Arc::new((Mutex::new(false), Condvar::new()));
    /// let pair2 = pair.clone();
    ///
    /// thread::spawn(move|| {
    ///     let &(ref lock, ref cvar) = &*pair2;
    ///     let mut started = lock.lock().unwrap();
    ///     *started = true;
    ///     // We notify the condvar that the value has changed.
    ///     cvar.notify_one();
    /// });
    ///
    /// // Wait for the thread to start up.
    /// let &(ref lock, ref cvar) = &*pair;
    /// let mut started = lock.lock().unwrap();
    /// // As long as the value inside the `Mutex` is false, we wait.
    /// while !*started {
    ///     started = cvar.wait(started).unwrap();
    /// }
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn wait<'a, T>(&self, guard: MutexGuard<'a, T>)
                       -> LockResult<MutexGuard<'a, T>> {
        let poisoned = unsafe {
            let lock = mutex::guard_lock(&guard);
            self.verify(lock);
            self.inner.wait(lock);
            mutex::guard_poison(&guard).get()
        };
        if poisoned {
            Err(PoisonError::new(guard))
        } else {
            Ok(guard)
        }
    }

    /// Blocks the current thread until this condition variable receives a
    /// notification and the required condition is met. Spurious wakeups are
    /// ignored and this function will only return once the condition has been
    /// met.
    ///
    /// This function will atomically unlock the mutex specified (represented by
    /// `guard`) and block the current thread. This means that any calls
    /// to [`notify_one`] or [`notify_all`] which happen logically after the
    /// mutex is unlocked are candidates to wake this thread up. When this
    /// function call returns, the lock specified will have been re-acquired.
    ///
    /// # Errors
    ///
    /// This function will return an error if the mutex being waited on is
    /// poisoned when this thread re-acquires the lock. For more information,
    /// see information about [poisoning] on the [`Mutex`] type.
    ///
    /// [`notify_one`]: #method.notify_one
    /// [`notify_all`]: #method.notify_all
    /// [poisoning]: ../sync/struct.Mutex.html#poisoning
    /// [`Mutex`]: ../sync/struct.Mutex.html
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(wait_until)]
    ///
    /// use std::sync::{Arc, Mutex, Condvar};
    /// use std::thread;
    ///
    /// let pair = Arc::new((Mutex::new(false), Condvar::new()));
    /// let pair2 = pair.clone();
    ///
    /// thread::spawn(move|| {
    ///     let &(ref lock, ref cvar) = &*pair2;
    ///     let mut started = lock.lock().unwrap();
    ///     *started = true;
    ///     // We notify the condvar that the value has changed.
    ///     cvar.notify_one();
    /// });
    ///
    /// // Wait for the thread to start up.
    /// let &(ref lock, ref cvar) = &*pair;
    /// // As long as the value inside the `Mutex` is false, we wait.
    /// let _guard = cvar.wait_until(lock.lock().unwrap(), |started| { *started }).unwrap();
    /// ```
    #[unstable(feature = "wait_until", issue = "47960")]
    pub fn wait_until<'a, T, F>(&self, mut guard: MutexGuard<'a, T>,
                                mut condition: F)
                                -> LockResult<MutexGuard<'a, T>>
                                where F: FnMut(&mut T) -> bool {
        while !condition(&mut *guard) {
            guard = self.wait(guard)?;
        }
        Ok(guard)
    }


    /// Waits on this condition variable for a notification, timing out after a
    /// specified duration.
    ///
    /// The semantics of this function are equivalent to [`wait`]
    /// except that the thread will be blocked for roughly no longer
    /// than `ms` milliseconds. This method should not be used for
    /// precise timing due to anomalies such as preemption or platform
    /// differences that may not cause the maximum amount of time
    /// waited to be precisely `ms`.
    ///
    /// Note that the best effort is made to ensure that the time waited is
    /// measured with a monotonic clock, and not affected by the changes made to
    /// the system time.
    ///
    /// The returned boolean is `false` only if the timeout is known
    /// to have elapsed.
    ///
    /// Like [`wait`], the lock specified will be re-acquired when this function
    /// returns, regardless of whether the timeout elapsed or not.
    ///
    /// [`wait`]: #method.wait
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::{Arc, Mutex, Condvar};
    /// use std::thread;
    ///
    /// let pair = Arc::new((Mutex::new(false), Condvar::new()));
    /// let pair2 = pair.clone();
    ///
    /// thread::spawn(move|| {
    ///     let &(ref lock, ref cvar) = &*pair2;
    ///     let mut started = lock.lock().unwrap();
    ///     *started = true;
    ///     // We notify the condvar that the value has changed.
    ///     cvar.notify_one();
    /// });
    ///
    /// // Wait for the thread to start up.
    /// let &(ref lock, ref cvar) = &*pair;
    /// let mut started = lock.lock().unwrap();
    /// // As long as the value inside the `Mutex` is false, we wait.
    /// loop {
    ///     let result = cvar.wait_timeout_ms(started, 10).unwrap();
    ///     // 10 milliseconds have passed, or maybe the value changed!
    ///     started = result.0;
    ///     if *started == true {
    ///         // We received the notification and the value has been updated, we can leave.
    ///         break
    ///     }
    /// }
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[rustc_deprecated(since = "1.6.0", reason = "replaced by `std::sync::Condvar::wait_timeout`")]
    pub fn wait_timeout_ms<'a, T>(&self, guard: MutexGuard<'a, T>, ms: u32)
                                  -> LockResult<(MutexGuard<'a, T>, bool)> {
        let res = self.wait_timeout(guard, Duration::from_millis(ms as u64));
        poison::map_result(res, |(a, b)| {
            (a, !b.timed_out())
        })
    }

    /// Waits on this condition variable for a notification, timing out after a
    /// specified duration.
    ///
    /// The semantics of this function are equivalent to [`wait`] except that
    /// the thread will be blocked for roughly no longer than `dur`. This
    /// method should not be used for precise timing due to anomalies such as
    /// preemption or platform differences that may not cause the maximum
    /// amount of time waited to be precisely `dur`.
    ///
    /// Note that the best effort is made to ensure that the time waited is
    /// measured with a monotonic clock, and not affected by the changes made to
    /// the system time.  This function is susceptible to spurious wakeups.
    /// Condition variables normally have a boolean predicate associated with
    /// them, and the predicate must always be checked each time this function
    /// returns to protect against spurious wakeups.  Additionally, it is
    /// typically desirable for the time-out to not exceed some duration in
    /// spite of spurious wakes, thus the sleep-duration is decremented by the
    /// amount slept.  Alternatively, use the `wait_timeout_until` method
    /// to wait until a condition is met with a total time-out regardless
    /// of spurious wakes.
    ///
    /// The returned [`WaitTimeoutResult`] value indicates if the timeout is
    /// known to have elapsed.
    ///
    /// Like [`wait`], the lock specified will be re-acquired when this function
    /// returns, regardless of whether the timeout elapsed or not.
    ///
    /// [`wait`]: #method.wait
    /// [`wait_timeout_until`]: #method.wait_timeout_until
    /// [`WaitTimeoutResult`]: struct.WaitTimeoutResult.html
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::{Arc, Mutex, Condvar};
    /// use std::thread;
    /// use std::time::Duration;
    ///
    /// let pair = Arc::new((Mutex::new(false), Condvar::new()));
    /// let pair2 = pair.clone();
    ///
    /// thread::spawn(move|| {
    ///     let &(ref lock, ref cvar) = &*pair2;
    ///     let mut started = lock.lock().unwrap();
    ///     *started = true;
    ///     // We notify the condvar that the value has changed.
    ///     cvar.notify_one();
    /// });
    ///
    /// // wait for the thread to start up
    /// let &(ref lock, ref cvar) = &*pair;
    /// let mut started = lock.lock().unwrap();
    /// // as long as the value inside the `Mutex` is false, we wait
    /// loop {
    ///     let result = cvar.wait_timeout(started, Duration::from_millis(10)).unwrap();
    ///     // 10 milliseconds have passed, or maybe the value changed!
    ///     started = result.0;
    ///     if *started == true {
    ///         // We received the notification and the value has been updated, we can leave.
    ///         break
    ///     }
    /// }
    /// ```
    #[stable(feature = "wait_timeout", since = "1.5.0")]
    pub fn wait_timeout<'a, T>(&self, guard: MutexGuard<'a, T>,
                               dur: Duration)
                               -> LockResult<(MutexGuard<'a, T>, WaitTimeoutResult)> {
        let (poisoned, result) = unsafe {
            let lock = mutex::guard_lock(&guard);
            self.verify(lock);
            let success = self.inner.wait_timeout(lock, dur);
            (mutex::guard_poison(&guard).get(), WaitTimeoutResult(!success))
        };
        if poisoned {
            Err(PoisonError::new((guard, result)))
        } else {
            Ok((guard, result))
        }
    }

    /// Waits on this condition variable for a notification, timing out after a
    /// specified duration.  Spurious wakes will not cause this function to
    /// return.
    ///
    /// The semantics of this function are equivalent to [`wait_until`] except
    /// that the thread will be blocked for roughly no longer than `dur`. This
    /// method should not be used for precise timing due to anomalies such as
    /// preemption or platform differences that may not cause the maximum
    /// amount of time waited to be precisely `dur`.
    ///
    /// Note that the best effort is made to ensure that the time waited is
    /// measured with a monotonic clock, and not affected by the changes made to
    /// the system time.
    ///
    /// The returned [`WaitTimeoutResult`] value indicates if the timeout is
    /// known to have elapsed without the condition being met.
    ///
    /// Like [`wait_until`], the lock specified will be re-acquired when this
    /// function returns, regardless of whether the timeout elapsed or not.
    ///
    /// [`wait_until`]: #method.wait_until
    /// [`wait_timeout`]: #method.wait_timeout
    /// [`WaitTimeoutResult`]: struct.WaitTimeoutResult.html
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(wait_timeout_until)]
    ///
    /// use std::sync::{Arc, Mutex, Condvar};
    /// use std::thread;
    /// use std::time::Duration;
    ///
    /// let pair = Arc::new((Mutex::new(false), Condvar::new()));
    /// let pair2 = pair.clone();
    ///
    /// thread::spawn(move|| {
    ///     let &(ref lock, ref cvar) = &*pair2;
    ///     let mut started = lock.lock().unwrap();
    ///     *started = true;
    ///     // We notify the condvar that the value has changed.
    ///     cvar.notify_one();
    /// });
    ///
    /// // wait for the thread to start up
    /// let &(ref lock, ref cvar) = &*pair;
    /// let result = cvar.wait_timeout_until(
    ///     lock.lock().unwrap(),
    ///     Duration::from_millis(100),
    ///     |&mut started| started,
    /// ).unwrap();
    /// if result.1.timed_out() {
    ///     // timed-out without the condition ever evaluating to true.
    /// }
    /// // access the locked mutex via result.0
    /// ```
    #[unstable(feature = "wait_timeout_until", issue = "47960")]
    pub fn wait_timeout_until<'a, T, F>(&self, mut guard: MutexGuard<'a, T>,
                                        dur: Duration, mut condition: F)
                                        -> LockResult<(MutexGuard<'a, T>, WaitTimeoutResult)>
                                        where F: FnMut(&mut T) -> bool {
        let start = Instant::now();
        loop {
            if condition(&mut *guard) {
                return Ok((guard, WaitTimeoutResult(false)));
            }
            let timeout = match dur.checked_sub(start.elapsed()) {
                Some(timeout) => timeout,
                None => return Ok((guard, WaitTimeoutResult(true))),
            };
            guard = self.wait_timeout(guard, timeout)?.0;
        }
    }

    /// Wakes up one blocked thread on this condvar.
    ///
    /// If there is a blocked thread on this condition variable, then it will
    /// be woken up from its call to [`wait`] or [`wait_timeout`]. Calls to
    /// `notify_one` are not buffered in any way.
    ///
    /// To wake up all threads, see [`notify_all`].
    ///
    /// [`wait`]: #method.wait
    /// [`wait_timeout`]: #method.wait_timeout
    /// [`notify_all`]: #method.notify_all
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::{Arc, Mutex, Condvar};
    /// use std::thread;
    ///
    /// let pair = Arc::new((Mutex::new(false), Condvar::new()));
    /// let pair2 = pair.clone();
    ///
    /// thread::spawn(move|| {
    ///     let &(ref lock, ref cvar) = &*pair2;
    ///     let mut started = lock.lock().unwrap();
    ///     *started = true;
    ///     // We notify the condvar that the value has changed.
    ///     cvar.notify_one();
    /// });
    ///
    /// // Wait for the thread to start up.
    /// let &(ref lock, ref cvar) = &*pair;
    /// let mut started = lock.lock().unwrap();
    /// // As long as the value inside the `Mutex` is false, we wait.
    /// while !*started {
    ///     started = cvar.wait(started).unwrap();
    /// }
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn notify_one(&self) {
        unsafe { self.inner.notify_one() }
    }

    /// Wakes up all blocked threads on this condvar.
    ///
    /// This method will ensure that any current waiters on the condition
    /// variable are awoken. Calls to `notify_all()` are not buffered in any
    /// way.
    ///
    /// To wake up only one thread, see [`notify_one`].
    ///
    /// [`notify_one`]: #method.notify_one
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::{Arc, Mutex, Condvar};
    /// use std::thread;
    ///
    /// let pair = Arc::new((Mutex::new(false), Condvar::new()));
    /// let pair2 = pair.clone();
    ///
    /// thread::spawn(move|| {
    ///     let &(ref lock, ref cvar) = &*pair2;
    ///     let mut started = lock.lock().unwrap();
    ///     *started = true;
    ///     // We notify the condvar that the value has changed.
    ///     cvar.notify_all();
    /// });
    ///
    /// // Wait for the thread to start up.
    /// let &(ref lock, ref cvar) = &*pair;
    /// let mut started = lock.lock().unwrap();
    /// // As long as the value inside the `Mutex` is false, we wait.
    /// while !*started {
    ///     started = cvar.wait(started).unwrap();
    /// }
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn notify_all(&self) {
        unsafe { self.inner.notify_all() }
    }

    fn verify(&self, mutex: &sys_mutex::Mutex) {
        let addr = mutex as *const _ as usize;
        match self.mutex.compare_and_swap(0, addr, Ordering::SeqCst) {
            // If we got out 0, then we have successfully bound the mutex to
            // this cvar.
            0 => {}

            // If we get out a value that's the same as `addr`, then someone
            // already beat us to the punch.
            n if n == addr => {}

            // Anything else and we're using more than one mutex on this cvar,
            // which is currently disallowed.
            _ => panic!("attempted to use a condition variable with two \
                         mutexes"),
        }
    }
}

#[stable(feature = "std_debug", since = "1.16.0")]
impl fmt::Debug for Condvar {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.pad("Condvar { .. }")
    }
}

#[stable(feature = "condvar_default", since = "1.10.0")]
impl Default for Condvar {
    /// Creates a `Condvar` which is ready to be waited on and notified.
    fn default() -> Condvar {
        Condvar::new()
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl Drop for Condvar {
    fn drop(&mut self) {
        unsafe { self.inner.destroy() }
    }
}

#[cfg(test)]
mod tests {
    /// #![feature(wait_until)]
    use sync::mpsc::channel;
    use sync::{Condvar, Mutex, Arc};
    use sync::atomic::{AtomicBool, Ordering};
    use thread;
    use time::Duration;
    use u64;

    #[test]
    fn smoke() {
        let c = Condvar::new();
        c.notify_one();
        c.notify_all();
    }

    #[test]
    #[cfg_attr(target_os = "emscripten", ignore)]
    fn notify_one() {
        let m = Arc::new(Mutex::new(()));
        let m2 = m.clone();
        let c = Arc::new(Condvar::new());
        let c2 = c.clone();

        let g = m.lock().unwrap();
        let _t = thread::spawn(move|| {
            let _g = m2.lock().unwrap();
            c2.notify_one();
        });
        let g = c.wait(g).unwrap();
        drop(g);
    }

    #[test]
    #[cfg_attr(target_os = "emscripten", ignore)]
    fn notify_all() {
        const N: usize = 10;

        let data = Arc::new((Mutex::new(0), Condvar::new()));
        let (tx, rx) = channel();
        for _ in 0..N {
            let data = data.clone();
            let tx = tx.clone();
            thread::spawn(move|| {
                let &(ref lock, ref cond) = &*data;
                let mut cnt = lock.lock().unwrap();
                *cnt += 1;
                if *cnt == N {
                    tx.send(()).unwrap();
                }
                while *cnt != 0 {
                    cnt = cond.wait(cnt).unwrap();
                }
                tx.send(()).unwrap();
            });
        }
        drop(tx);

        let &(ref lock, ref cond) = &*data;
        rx.recv().unwrap();
        let mut cnt = lock.lock().unwrap();
        *cnt = 0;
        cond.notify_all();
        drop(cnt);

        for _ in 0..N {
            rx.recv().unwrap();
        }
    }

    #[test]
    #[cfg_attr(target_os = "emscripten", ignore)]
    fn wait_until() {
        let pair = Arc::new((Mutex::new(false), Condvar::new()));
        let pair2 = pair.clone();

        // Inside of our lock, spawn a new thread, and then wait for it to start.
        thread::spawn(move|| {
            let &(ref lock, ref cvar) = &*pair2;
            let mut started = lock.lock().unwrap();
            *started = true;
            // We notify the condvar that the value has changed.
            cvar.notify_one();
        });

        // Wait for the thread to start up.
        let &(ref lock, ref cvar) = &*pair;
        let guard = cvar.wait_until(lock.lock().unwrap(), |started| {
            *started
        });
        assert!(*guard.unwrap());
    }

    #[test]
    #[cfg_attr(target_os = "emscripten", ignore)]
    fn wait_timeout_wait() {
        let m = Arc::new(Mutex::new(()));
        let c = Arc::new(Condvar::new());

        loop {
            let g = m.lock().unwrap();
            let (_g, no_timeout) = c.wait_timeout(g, Duration::from_millis(1)).unwrap();
            // spurious wakeups mean this isn't necessarily true
            // so execute test again, if not timeout
            if !no_timeout.timed_out() {
                continue;
            }

            break;
        }
    }

    #[test]
    #[cfg_attr(target_os = "emscripten", ignore)]
    fn wait_timeout_until_wait() {
        let m = Arc::new(Mutex::new(()));
        let c = Arc::new(Condvar::new());

        let g = m.lock().unwrap();
        let (_g, wait) = c.wait_timeout_until(g, Duration::from_millis(1), |_| { false }).unwrap();
        // no spurious wakeups. ensure it timed-out
        assert!(wait.timed_out());
    }

    #[test]
    #[cfg_attr(target_os = "emscripten", ignore)]
    fn wait_timeout_until_instant_satisfy() {
        let m = Arc::new(Mutex::new(()));
        let c = Arc::new(Condvar::new());

        let g = m.lock().unwrap();
        let (_g, wait) = c.wait_timeout_until(g, Duration::from_millis(0), |_| { true }).unwrap();
        // ensure it didn't time-out even if we were not given any time.
        assert!(!wait.timed_out());
    }

    #[test]
    #[cfg_attr(target_os = "emscripten", ignore)]
    fn wait_timeout_until_wake() {
        let pair = Arc::new((Mutex::new(false), Condvar::new()));
        let pair_copy = pair.clone();

        let &(ref m, ref c) = &*pair;
        let g = m.lock().unwrap();
        let _t = thread::spawn(move || {
            let &(ref lock, ref cvar) = &*pair_copy;
            let mut started = lock.lock().unwrap();
            thread::sleep(Duration::from_millis(1));
            *started = true;
            cvar.notify_one();
        });
        let (g2, wait) = c.wait_timeout_until(g, Duration::from_millis(u64::MAX), |&mut notified| {
            notified
        }).unwrap();
        // ensure it didn't time-out even if we were not given any time.
        assert!(!wait.timed_out());
        assert!(*g2);
    }

    #[test]
    #[cfg_attr(target_os = "emscripten", ignore)]
    fn wait_timeout_wake() {
        let m = Arc::new(Mutex::new(()));
        let c = Arc::new(Condvar::new());

        loop {
            let g = m.lock().unwrap();

            let c2 = c.clone();
            let m2 = m.clone();

            let notified = Arc::new(AtomicBool::new(false));
            let notified_copy = notified.clone();

            let t = thread::spawn(move || {
                let _g = m2.lock().unwrap();
                thread::sleep(Duration::from_millis(1));
                notified_copy.store(true, Ordering::SeqCst);
                c2.notify_one();
            });
            let (g, timeout_res) = c.wait_timeout(g, Duration::from_millis(u64::MAX)).unwrap();
            assert!(!timeout_res.timed_out());
            // spurious wakeups mean this isn't necessarily true
            // so execute test again, if not notified
            if !notified.load(Ordering::SeqCst) {
                t.join().unwrap();
                continue;
            }
            drop(g);

            t.join().unwrap();

            break;
        }
    }

    #[test]
    #[should_panic]
    #[cfg_attr(target_os = "emscripten", ignore)]
    fn two_mutexes() {
        let m = Arc::new(Mutex::new(()));
        let m2 = m.clone();
        let c = Arc::new(Condvar::new());
        let c2 = c.clone();

        let mut g = m.lock().unwrap();
        let _t = thread::spawn(move|| {
            let _g = m2.lock().unwrap();
            c2.notify_one();
        });
        g = c.wait(g).unwrap();
        drop(g);

        let m = Mutex::new(());
        let _ = c.wait(m.lock().unwrap()).unwrap();
    }
}