1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
use super::{BorrowedBuf, BufReader, BufWriter, Read, Result, Write, DEFAULT_BUF_SIZE};
use crate::alloc::Allocator;
use crate::collections::VecDeque;
use crate::io::IoSlice;
use crate::mem::MaybeUninit;

#[cfg(test)]
mod tests;

/// Copies the entire contents of a reader into a writer.
///
/// This function will continuously read data from `reader` and then
/// write it into `writer` in a streaming fashion until `reader`
/// returns EOF.
///
/// On success, the total number of bytes that were copied from
/// `reader` to `writer` is returned.
///
/// If you want to copy the contents of one file to another and you’re
/// working with filesystem paths, see the [`fs::copy`] function.
///
/// [`fs::copy`]: crate::fs::copy
///
/// # Errors
///
/// This function will return an error immediately if any call to [`read`] or
/// [`write`] returns an error. All instances of [`ErrorKind::Interrupted`] are
/// handled by this function and the underlying operation is retried.
///
/// [`read`]: Read::read
/// [`write`]: Write::write
/// [`ErrorKind::Interrupted`]: crate::io::ErrorKind::Interrupted
///
/// # Examples
///
/// ```
/// use std::io;
///
/// fn main() -> io::Result<()> {
///     let mut reader: &[u8] = b"hello";
///     let mut writer: Vec<u8> = vec![];
///
///     io::copy(&mut reader, &mut writer)?;
///
///     assert_eq!(&b"hello"[..], &writer[..]);
///     Ok(())
/// }
/// ```
///
/// # Platform-specific behavior
///
/// On Linux (including Android), this function uses `copy_file_range(2)`,
/// `sendfile(2)` or `splice(2)` syscalls to move data directly between file
/// descriptors if possible.
///
/// Note that platform-specific behavior [may change in the future][changes].
///
/// [changes]: crate::io#platform-specific-behavior
#[stable(feature = "rust1", since = "1.0.0")]
pub fn copy<R: ?Sized, W: ?Sized>(reader: &mut R, writer: &mut W) -> Result<u64>
where
    R: Read,
    W: Write,
{
    cfg_if::cfg_if! {
        if #[cfg(any(target_os = "linux", target_os = "android"))] {
            crate::sys::kernel_copy::copy_spec(reader, writer)
        } else {
            generic_copy(reader, writer)
        }
    }
}

/// The userspace read-write-loop implementation of `io::copy` that is used when
/// OS-specific specializations for copy offloading are not available or not applicable.
pub(crate) fn generic_copy<R: ?Sized, W: ?Sized>(reader: &mut R, writer: &mut W) -> Result<u64>
where
    R: Read,
    W: Write,
{
    let read_buf = BufferedReaderSpec::buffer_size(reader);
    let write_buf = BufferedWriterSpec::buffer_size(writer);

    if read_buf >= DEFAULT_BUF_SIZE && read_buf >= write_buf {
        return BufferedReaderSpec::copy_to(reader, writer);
    }

    BufferedWriterSpec::copy_from(writer, reader)
}

/// Specialization of the read-write loop that reuses the internal
/// buffer of a BufReader. If there's no buffer then the writer side
/// should be used instead.
trait BufferedReaderSpec {
    fn buffer_size(&self) -> usize;

    fn copy_to(&mut self, to: &mut (impl Write + ?Sized)) -> Result<u64>;
}

impl<T> BufferedReaderSpec for T
where
    Self: Read,
    T: ?Sized,
{
    #[inline]
    default fn buffer_size(&self) -> usize {
        0
    }

    default fn copy_to(&mut self, _to: &mut (impl Write + ?Sized)) -> Result<u64> {
        unreachable!("only called from specializations")
    }
}

impl BufferedReaderSpec for &[u8] {
    fn buffer_size(&self) -> usize {
        // prefer this specialization since the source "buffer" is all we'll ever need,
        // even if it's small
        usize::MAX
    }

    fn copy_to(&mut self, to: &mut (impl Write + ?Sized)) -> Result<u64> {
        let len = self.len();
        to.write_all(self)?;
        *self = &self[len..];
        Ok(len as u64)
    }
}

impl<A: Allocator> BufferedReaderSpec for VecDeque<u8, A> {
    fn buffer_size(&self) -> usize {
        // prefer this specialization since the source "buffer" is all we'll ever need,
        // even if it's small
        usize::MAX
    }

    fn copy_to(&mut self, to: &mut (impl Write + ?Sized)) -> Result<u64> {
        let len = self.len();
        let (front, back) = self.as_slices();
        let bufs = &mut [IoSlice::new(front), IoSlice::new(back)];
        to.write_all_vectored(bufs)?;
        self.clear();
        Ok(len as u64)
    }
}

impl<I> BufferedReaderSpec for BufReader<I>
where
    Self: Read,
    I: ?Sized,
{
    fn buffer_size(&self) -> usize {
        self.capacity()
    }

    fn copy_to(&mut self, to: &mut (impl Write + ?Sized)) -> Result<u64> {
        let mut len = 0;

        loop {
            // Hack: this relies on `impl Read for BufReader` always calling fill_buf
            // if the buffer is empty, even for empty slices.
            // It can't be called directly here since specialization prevents us
            // from adding I: Read
            match self.read(&mut []) {
                Ok(_) => {}
                Err(e) if e.is_interrupted() => continue,
                Err(e) => return Err(e),
            }
            let buf = self.buffer();
            if self.buffer().len() == 0 {
                return Ok(len);
            }

            // In case the writer side is a BufWriter then its write_all
            // implements an optimization that passes through large
            // buffers to the underlying writer. That code path is #[cold]
            // but we're still avoiding redundant memcopies when doing
            // a copy between buffered inputs and outputs.
            to.write_all(buf)?;
            len += buf.len() as u64;
            self.discard_buffer();
        }
    }
}

/// Specialization of the read-write loop that either uses a stack buffer
/// or reuses the internal buffer of a BufWriter
trait BufferedWriterSpec: Write {
    fn buffer_size(&self) -> usize;

    fn copy_from<R: Read + ?Sized>(&mut self, reader: &mut R) -> Result<u64>;
}

impl<W: Write + ?Sized> BufferedWriterSpec for W {
    #[inline]
    default fn buffer_size(&self) -> usize {
        0
    }

    default fn copy_from<R: Read + ?Sized>(&mut self, reader: &mut R) -> Result<u64> {
        stack_buffer_copy(reader, self)
    }
}

impl<I: Write + ?Sized> BufferedWriterSpec for BufWriter<I> {
    fn buffer_size(&self) -> usize {
        self.capacity()
    }

    fn copy_from<R: Read + ?Sized>(&mut self, reader: &mut R) -> Result<u64> {
        if self.capacity() < DEFAULT_BUF_SIZE {
            return stack_buffer_copy(reader, self);
        }

        let mut len = 0;
        let mut init = 0;

        loop {
            let buf = self.buffer_mut();
            let mut read_buf: BorrowedBuf<'_> = buf.spare_capacity_mut().into();

            unsafe {
                // SAFETY: init is either 0 or the init_len from the previous iteration.
                read_buf.set_init(init);
            }

            if read_buf.capacity() >= DEFAULT_BUF_SIZE {
                let mut cursor = read_buf.unfilled();
                match reader.read_buf(cursor.reborrow()) {
                    Ok(()) => {
                        let bytes_read = cursor.written();

                        if bytes_read == 0 {
                            return Ok(len);
                        }

                        init = read_buf.init_len() - bytes_read;
                        len += bytes_read as u64;

                        // SAFETY: BorrowedBuf guarantees all of its filled bytes are init
                        unsafe { buf.set_len(buf.len() + bytes_read) };

                        // Read again if the buffer still has enough capacity, as BufWriter itself would do
                        // This will occur if the reader returns short reads
                    }
                    Err(ref e) if e.is_interrupted() => {}
                    Err(e) => return Err(e),
                }
            } else {
                self.flush_buf()?;
                init = 0;
            }
        }
    }
}

fn stack_buffer_copy<R: Read + ?Sized, W: Write + ?Sized>(
    reader: &mut R,
    writer: &mut W,
) -> Result<u64> {
    let buf: &mut [_] = &mut [MaybeUninit::uninit(); DEFAULT_BUF_SIZE];
    let mut buf: BorrowedBuf<'_> = buf.into();

    let mut len = 0;

    loop {
        match reader.read_buf(buf.unfilled()) {
            Ok(()) => {}
            Err(e) if e.is_interrupted() => continue,
            Err(e) => return Err(e),
        };

        if buf.filled().is_empty() {
            break;
        }

        len += buf.filled().len() as u64;
        writer.write_all(buf.filled())?;
        buf.clear();
    }

    Ok(len)
}