rusqlite/
statement.rs

1use std::ffi::{c_int, c_void};
2#[cfg(feature = "array")]
3use std::rc::Rc;
4use std::slice::from_raw_parts;
5use std::{fmt, mem, ptr, str};
6
7use super::ffi;
8use super::{len_as_c_int, str_for_sqlite};
9use super::{
10    AndThenRows, Connection, Error, MappedRows, Params, RawStatement, Result, Row, Rows, ValueRef,
11};
12use crate::bind::BindIndex;
13use crate::types::{ToSql, ToSqlOutput};
14#[cfg(feature = "array")]
15use crate::vtab::array::{free_array, ARRAY_TYPE};
16
17/// A prepared statement.
18pub struct Statement<'conn> {
19    pub(crate) conn: &'conn Connection,
20    pub(crate) stmt: RawStatement,
21}
22
23impl Statement<'_> {
24    /// Execute the prepared statement.
25    ///
26    /// On success, returns the number of rows that were changed or inserted or
27    /// deleted (via `sqlite3_changes`).
28    ///
29    /// ## Example
30    ///
31    /// ### Use with positional parameters
32    ///
33    /// ```rust,no_run
34    /// # use rusqlite::{Connection, Result, params};
35    /// fn update_rows(conn: &Connection) -> Result<()> {
36    ///     let mut stmt = conn.prepare("UPDATE foo SET bar = ?1 WHERE qux = ?2")?;
37    ///     // For a single parameter, or a parameter where all the values have
38    ///     // the same type, just passing an array is simplest.
39    ///     stmt.execute([2i32])?;
40    ///     // The `rusqlite::params!` macro is mostly useful when the parameters do not
41    ///     // all have the same type, or if there are more than 32 parameters
42    ///     // at once, but it can be used in other cases.
43    ///     stmt.execute(params![1i32])?;
44    ///     // However, it's not required, many cases are fine as:
45    ///     stmt.execute(&[&2i32])?;
46    ///     // Or even:
47    ///     stmt.execute([2i32])?;
48    ///     // If you really want to, this is an option as well.
49    ///     stmt.execute((2i32,))?;
50    ///     Ok(())
51    /// }
52    /// ```
53    ///
54    /// #### Heterogeneous positional parameters
55    ///
56    /// ```
57    /// use rusqlite::{Connection, Result};
58    /// fn store_file(conn: &Connection, path: &str, data: &[u8]) -> Result<()> {
59    ///     # // no need to do it for real.
60    ///     # fn sha256(_: &[u8]) -> [u8; 32] { [0; 32] }
61    ///     let query = "INSERT OR REPLACE INTO files(path, hash, data) VALUES (?1, ?2, ?3)";
62    ///     let mut stmt = conn.prepare_cached(query)?;
63    ///     let hash: [u8; 32] = sha256(data);
64    ///     // The easiest way to pass positional parameters of have several
65    ///     // different types is by using a tuple.
66    ///     stmt.execute((path, hash, data))?;
67    ///     // Using the `params!` macro also works, and supports longer parameter lists:
68    ///     stmt.execute(rusqlite::params![path, hash, data])?;
69    ///     Ok(())
70    /// }
71    /// # let c = Connection::open_in_memory().unwrap();
72    /// # c.execute_batch("CREATE TABLE files(path TEXT PRIMARY KEY, hash BLOB, data BLOB)").unwrap();
73    /// # store_file(&c, "foo/bar.txt", b"bibble").unwrap();
74    /// # store_file(&c, "foo/baz.txt", b"bobble").unwrap();
75    /// ```
76    ///
77    /// ### Use with named parameters
78    ///
79    /// ```rust,no_run
80    /// # use rusqlite::{Connection, Result, named_params};
81    /// fn insert(conn: &Connection) -> Result<()> {
82    ///     let mut stmt = conn.prepare("INSERT INTO test (key, value) VALUES (:key, :value)")?;
83    ///     // The `rusqlite::named_params!` macro (like `params!`) is useful for heterogeneous
84    ///     // sets of parameters (where all parameters are not the same type), or for queries
85    ///     // with many (more than 32) statically known parameters.
86    ///     stmt.execute(named_params! { ":key": "one", ":val": 2 })?;
87    ///     // However, named parameters can also be passed like:
88    ///     stmt.execute(&[(":key", "three"), (":val", "four")])?;
89    ///     // Or even: (note that a &T is required for the value type, currently)
90    ///     stmt.execute(&[(":key", &100), (":val", &200)])?;
91    ///     Ok(())
92    /// }
93    /// ```
94    ///
95    /// ### Use without parameters
96    ///
97    /// ```rust,no_run
98    /// # use rusqlite::{Connection, Result, params};
99    /// fn delete_all(conn: &Connection) -> Result<()> {
100    ///     let mut stmt = conn.prepare("DELETE FROM users")?;
101    ///     stmt.execute([])?;
102    ///     Ok(())
103    /// }
104    /// ```
105    ///
106    /// # Failure
107    ///
108    /// Will return `Err` if binding parameters fails, the executed statement
109    /// returns rows (in which case `query` should be used instead), or the
110    /// underlying SQLite call fails.
111    #[inline]
112    pub fn execute<P: Params>(&mut self, params: P) -> Result<usize> {
113        params.__bind_in(self)?;
114        self.execute_with_bound_parameters()
115    }
116
117    /// Execute an INSERT and return the ROWID.
118    ///
119    /// # Note
120    ///
121    /// This function is a convenience wrapper around
122    /// [`execute()`](Statement::execute) intended for queries that insert a
123    /// single item. It is possible to misuse this function in a way that it
124    /// cannot detect, such as by calling it on a statement which _updates_
125    /// a single item rather than inserting one. Please don't do that.
126    ///
127    /// # Failure
128    ///
129    /// Will return `Err` if no row is inserted or many rows are inserted.
130    #[inline]
131    pub fn insert<P: Params>(&mut self, params: P) -> Result<i64> {
132        let changes = self.execute(params)?;
133        match changes {
134            1 => Ok(self.conn.last_insert_rowid()),
135            _ => Err(Error::StatementChangedRows(changes)),
136        }
137    }
138
139    /// Execute the prepared statement, returning a handle to the resulting
140    /// rows.
141    ///
142    /// Due to lifetime restrictions, the rows handle returned by `query` does
143    /// not implement the `Iterator` trait. Consider using
144    /// [`query_map`](Statement::query_map) or
145    /// [`query_and_then`](Statement::query_and_then) instead, which do.
146    ///
147    /// ## Example
148    ///
149    /// ### Use without parameters
150    ///
151    /// ```rust,no_run
152    /// # use rusqlite::{Connection, Result};
153    /// fn get_names(conn: &Connection) -> Result<Vec<String>> {
154    ///     let mut stmt = conn.prepare("SELECT name FROM people")?;
155    ///     let mut rows = stmt.query([])?;
156    ///
157    ///     let mut names = Vec::new();
158    ///     while let Some(row) = rows.next()? {
159    ///         names.push(row.get(0)?);
160    ///     }
161    ///
162    ///     Ok(names)
163    /// }
164    /// ```
165    ///
166    /// ### Use with positional parameters
167    ///
168    /// ```rust,no_run
169    /// # use rusqlite::{Connection, Result};
170    /// fn query(conn: &Connection, name: &str) -> Result<()> {
171    ///     let mut stmt = conn.prepare("SELECT * FROM test where name = ?1")?;
172    ///     let mut rows = stmt.query(rusqlite::params![name])?;
173    ///     while let Some(row) = rows.next()? {
174    ///         // ...
175    ///     }
176    ///     Ok(())
177    /// }
178    /// ```
179    ///
180    /// Or, equivalently (but without the [`crate::params!`] macro).
181    ///
182    /// ```rust,no_run
183    /// # use rusqlite::{Connection, Result};
184    /// fn query(conn: &Connection, name: &str) -> Result<()> {
185    ///     let mut stmt = conn.prepare("SELECT * FROM test where name = ?1")?;
186    ///     let mut rows = stmt.query([name])?;
187    ///     while let Some(row) = rows.next()? {
188    ///         // ...
189    ///     }
190    ///     Ok(())
191    /// }
192    /// ```
193    ///
194    /// ### Use with named parameters
195    ///
196    /// ```rust,no_run
197    /// # use rusqlite::{Connection, Result};
198    /// fn query(conn: &Connection) -> Result<()> {
199    ///     let mut stmt = conn.prepare("SELECT * FROM test where name = :name")?;
200    ///     let mut rows = stmt.query(&[(":name", "one")])?;
201    ///     while let Some(row) = rows.next()? {
202    ///         // ...
203    ///     }
204    ///     Ok(())
205    /// }
206    /// ```
207    ///
208    /// Note, the `named_params!` macro is provided for syntactic convenience,
209    /// and so the above example could also be written as:
210    ///
211    /// ```rust,no_run
212    /// # use rusqlite::{Connection, Result, named_params};
213    /// fn query(conn: &Connection) -> Result<()> {
214    ///     let mut stmt = conn.prepare("SELECT * FROM test where name = :name")?;
215    ///     let mut rows = stmt.query(named_params! { ":name": "one" })?;
216    ///     while let Some(row) = rows.next()? {
217    ///         // ...
218    ///     }
219    ///     Ok(())
220    /// }
221    /// ```
222    ///
223    /// ## Failure
224    ///
225    /// Will return `Err` if binding parameters fails.
226    #[inline]
227    pub fn query<P: Params>(&mut self, params: P) -> Result<Rows<'_>> {
228        params.__bind_in(self)?;
229        Ok(Rows::new(self))
230    }
231
232    /// Executes the prepared statement and maps a function over the resulting
233    /// rows, returning an iterator over the mapped function results.
234    ///
235    /// `f` is used to transform the _streaming_ iterator into a _standard_
236    /// iterator.
237    ///
238    /// This is equivalent to `stmt.query(params)?.mapped(f)`.
239    ///
240    /// ## Example
241    ///
242    /// ### Use with positional params
243    ///
244    /// ```rust,no_run
245    /// # use rusqlite::{Connection, Result};
246    /// fn get_names(conn: &Connection) -> Result<Vec<String>> {
247    ///     let mut stmt = conn.prepare("SELECT name FROM people")?;
248    ///     let rows = stmt.query_map([], |row| row.get(0))?;
249    ///
250    ///     let mut names = Vec::new();
251    ///     for name_result in rows {
252    ///         names.push(name_result?);
253    ///     }
254    ///
255    ///     Ok(names)
256    /// }
257    /// ```
258    ///
259    /// ### Use with named params
260    ///
261    /// ```rust,no_run
262    /// # use rusqlite::{Connection, Result};
263    /// fn get_names(conn: &Connection) -> Result<Vec<String>> {
264    ///     let mut stmt = conn.prepare("SELECT name FROM people WHERE id = :id")?;
265    ///     let rows = stmt.query_map(&[(":id", &"one")], |row| row.get(0))?;
266    ///
267    ///     let mut names = Vec::new();
268    ///     for name_result in rows {
269    ///         names.push(name_result?);
270    ///     }
271    ///
272    ///     Ok(names)
273    /// }
274    /// ```
275    /// ## Failure
276    ///
277    /// Will return `Err` if binding parameters fails.
278    pub fn query_map<T, P, F>(&mut self, params: P, f: F) -> Result<MappedRows<'_, F>>
279    where
280        P: Params,
281        F: FnMut(&Row<'_>) -> Result<T>,
282    {
283        self.query(params).map(|rows| rows.mapped(f))
284    }
285
286    /// Executes the prepared statement and maps a function over the resulting
287    /// rows, where the function returns a `Result` with `Error` type
288    /// implementing `std::convert::From<Error>` (so errors can be unified).
289    ///
290    /// This is equivalent to `stmt.query(params)?.and_then(f)`.
291    ///
292    /// ## Example
293    ///
294    /// ### Use with named params
295    ///
296    /// ```rust,no_run
297    /// # use rusqlite::{Connection, Result};
298    /// struct Person {
299    ///     name: String,
300    /// };
301    ///
302    /// fn name_to_person(name: String) -> Result<Person> {
303    ///     // ... check for valid name
304    ///     Ok(Person { name })
305    /// }
306    ///
307    /// fn get_names(conn: &Connection) -> Result<Vec<Person>> {
308    ///     let mut stmt = conn.prepare("SELECT name FROM people WHERE id = :id")?;
309    ///     let rows = stmt.query_and_then(&[(":id", "one")], |row| name_to_person(row.get(0)?))?;
310    ///
311    ///     let mut persons = Vec::new();
312    ///     for person_result in rows {
313    ///         persons.push(person_result?);
314    ///     }
315    ///
316    ///     Ok(persons)
317    /// }
318    /// ```
319    ///
320    /// ### Use with positional params
321    ///
322    /// ```rust,no_run
323    /// # use rusqlite::{Connection, Result};
324    /// fn get_names(conn: &Connection) -> Result<Vec<String>> {
325    ///     let mut stmt = conn.prepare("SELECT name FROM people WHERE id = ?1")?;
326    ///     let rows = stmt.query_and_then(["one"], |row| row.get::<_, String>(0))?;
327    ///
328    ///     let mut persons = Vec::new();
329    ///     for person_result in rows {
330    ///         persons.push(person_result?);
331    ///     }
332    ///
333    ///     Ok(persons)
334    /// }
335    /// ```
336    ///
337    /// # Failure
338    ///
339    /// Will return `Err` if binding parameters fails.
340    #[inline]
341    pub fn query_and_then<T, E, P, F>(&mut self, params: P, f: F) -> Result<AndThenRows<'_, F>>
342    where
343        P: Params,
344        E: From<Error>,
345        F: FnMut(&Row<'_>) -> Result<T, E>,
346    {
347        self.query(params).map(|rows| rows.and_then(f))
348    }
349
350    /// Return `true` if a query in the SQL statement it executes returns one
351    /// or more rows and `false` if the SQL returns an empty set.
352    #[inline]
353    pub fn exists<P: Params>(&mut self, params: P) -> Result<bool> {
354        let mut rows = self.query(params)?;
355        let exists = rows.next()?.is_some();
356        Ok(exists)
357    }
358
359    /// Convenience method to execute a query that is expected to return a
360    /// single row.
361    ///
362    /// If the query returns more than one row, all rows except the first are
363    /// ignored.
364    ///
365    /// Returns `Err(QueryReturnedNoRows)` if no results are returned. If the
366    /// query truly is optional, you can call
367    /// [`.optional()`](crate::OptionalExtension::optional) on the result of
368    /// this to get a `Result<Option<T>>` (requires that the trait
369    /// `rusqlite::OptionalExtension` is imported).
370    ///
371    /// # Failure
372    ///
373    /// Will return `Err` if the underlying SQLite call fails.
374    pub fn query_row<T, P, F>(&mut self, params: P, f: F) -> Result<T>
375    where
376        P: Params,
377        F: FnOnce(&Row<'_>) -> Result<T>,
378    {
379        let mut rows = self.query(params)?;
380
381        rows.get_expected_row().and_then(f)
382    }
383
384    /// Convenience method to execute a query that is expected to return exactly
385    /// one row.
386    ///
387    /// Returns `Err(QueryReturnedMoreThanOneRow)` if the query returns more than one row.
388    ///
389    /// Returns `Err(QueryReturnedNoRows)` if no results are returned. If the
390    /// query truly is optional, you can call
391    /// [`.optional()`](crate::OptionalExtension::optional) on the result of
392    /// this to get a `Result<Option<T>>` (requires that the trait
393    /// `rusqlite::OptionalExtension` is imported).
394    ///
395    /// # Failure
396    ///
397    /// Will return `Err` if the underlying SQLite call fails.
398    pub fn query_one<T, P, F>(&mut self, params: P, f: F) -> Result<T>
399    where
400        P: Params,
401        F: FnOnce(&Row<'_>) -> Result<T>,
402    {
403        let mut rows = self.query(params)?;
404        let row = rows.get_expected_row().and_then(f)?;
405        if rows.next()?.is_some() {
406            return Err(Error::QueryReturnedMoreThanOneRow);
407        }
408        Ok(row)
409    }
410
411    /// Consumes the statement.
412    ///
413    /// Functionally equivalent to the `Drop` implementation, but allows
414    /// callers to see any errors that occur.
415    ///
416    /// # Failure
417    ///
418    /// Will return `Err` if the underlying SQLite call fails.
419    #[inline]
420    pub fn finalize(mut self) -> Result<()> {
421        self.finalize_()
422    }
423
424    /// Return the (one-based) index of an SQL parameter given its name.
425    ///
426    /// Note that the initial ":" or "$" or "@" or "?" used to specify the
427    /// parameter is included as part of the name.
428    ///
429    /// ```rust,no_run
430    /// # use rusqlite::{Connection, Result};
431    /// fn example(conn: &Connection) -> Result<()> {
432    ///     let stmt = conn.prepare("SELECT * FROM test WHERE name = :example")?;
433    ///     let index = stmt.parameter_index(":example")?;
434    ///     assert_eq!(index, Some(1));
435    ///     Ok(())
436    /// }
437    /// ```
438    ///
439    /// # Failure
440    ///
441    /// Will return Err if `name` is invalid. Will return Ok(None) if the name
442    /// is valid but not a bound parameter of this statement.
443    #[inline]
444    pub fn parameter_index(&self, name: &str) -> Result<Option<usize>> {
445        Ok(self.stmt.bind_parameter_index(name))
446    }
447
448    /// Return the SQL parameter name given its (one-based) index (the inverse
449    /// of [`Statement::parameter_index`]).
450    ///
451    /// ```rust,no_run
452    /// # use rusqlite::{Connection, Result};
453    /// fn example(conn: &Connection) -> Result<()> {
454    ///     let stmt = conn.prepare("SELECT * FROM test WHERE name = :example")?;
455    ///     let index = stmt.parameter_name(1);
456    ///     assert_eq!(index, Some(":example"));
457    ///     Ok(())
458    /// }
459    /// ```
460    ///
461    /// # Failure
462    ///
463    /// Will return `None` if the column index is out of bounds or if the
464    /// parameter is positional.
465    ///
466    /// # Panics
467    ///
468    /// Panics when parameter name is not valid UTF-8.
469    #[inline]
470    pub fn parameter_name(&self, index: usize) -> Option<&'_ str> {
471        self.stmt.bind_parameter_name(index as i32).map(|name| {
472            name.to_str()
473                .expect("Invalid UTF-8 sequence in parameter name")
474        })
475    }
476
477    #[inline]
478    pub(crate) fn bind_parameters<P>(&mut self, params: P) -> Result<()>
479    where
480        P: IntoIterator,
481        P::Item: ToSql,
482    {
483        let expected = self.stmt.bind_parameter_count();
484        let mut index = 0;
485        for p in params {
486            index += 1; // The leftmost SQL parameter has an index of 1.
487            if index > expected {
488                break;
489            }
490            self.bind_parameter(&p, index)?;
491        }
492        if index != expected {
493            Err(Error::InvalidParameterCount(index, expected))
494        } else {
495            Ok(())
496        }
497    }
498
499    #[inline]
500    pub(crate) fn ensure_parameter_count(&self, n: usize) -> Result<()> {
501        let count = self.parameter_count();
502        if count != n {
503            Err(Error::InvalidParameterCount(n, count))
504        } else {
505            Ok(())
506        }
507    }
508
509    #[inline]
510    pub(crate) fn bind_parameters_named<S: BindIndex, T: ToSql>(
511        &mut self,
512        params: &[(S, T)],
513    ) -> Result<()> {
514        for (name, value) in params {
515            let i = name.idx(self)?;
516            let ts: &dyn ToSql = &value;
517            self.bind_parameter(ts, i)?;
518        }
519        Ok(())
520    }
521
522    /// Return the number of parameters that can be bound to this statement.
523    #[inline]
524    pub fn parameter_count(&self) -> usize {
525        self.stmt.bind_parameter_count()
526    }
527
528    /// Low level API to directly bind a parameter to a given index.
529    ///
530    /// Note that the index is one-based, that is, the first parameter index is
531    /// 1 and not 0. This is consistent with the SQLite API and the values given
532    /// to parameters bound as `?NNN`.
533    ///
534    /// The valid values for `one_based_col_index` begin at `1`, and end at
535    /// [`Statement::parameter_count`], inclusive.
536    ///
537    /// # Caveats
538    ///
539    /// This should not generally be used, but is available for special cases
540    /// such as:
541    ///
542    /// - binding parameters where a gap exists.
543    /// - binding named and positional parameters in the same query.
544    /// - separating parameter binding from query execution.
545    ///
546    /// In general, statements that have had *any* parameters bound this way
547    /// should have *all* parameters bound this way, and be queried or executed
548    /// by [`Statement::raw_query`] or [`Statement::raw_execute`], other usage
549    /// is unsupported and will likely, probably in surprising ways.
550    ///
551    /// That is: Do not mix the "raw" statement functions with the rest of the
552    /// API, or the results may be surprising, and may even change in future
553    /// versions without comment.
554    ///
555    /// # Example
556    ///
557    /// ```rust,no_run
558    /// # use rusqlite::{Connection, Result};
559    /// fn query(conn: &Connection) -> Result<()> {
560    ///     let mut stmt = conn.prepare("SELECT * FROM test WHERE name = :name AND value > ?2")?;
561    ///     stmt.raw_bind_parameter(c":name", "foo")?;
562    ///     stmt.raw_bind_parameter(2, 100)?;
563    ///     let mut rows = stmt.raw_query();
564    ///     while let Some(row) = rows.next()? {
565    ///         // ...
566    ///     }
567    ///     Ok(())
568    /// }
569    /// ```
570    #[inline]
571    pub fn raw_bind_parameter<I: BindIndex, T: ToSql>(
572        &mut self,
573        one_based_index: I,
574        param: T,
575    ) -> Result<()> {
576        // This is the same as `bind_parameter` but slightly more ergonomic and
577        // correctly takes `&mut self`.
578        self.bind_parameter(&param, one_based_index.idx(self)?)
579    }
580
581    /// Low level API to execute a statement given that all parameters were
582    /// bound explicitly with the [`Statement::raw_bind_parameter`] API.
583    ///
584    /// # Caveats
585    ///
586    /// Any unbound parameters will have `NULL` as their value.
587    ///
588    /// This should not generally be used outside special cases, and
589    /// functions in the [`Statement::execute`] family should be preferred.
590    ///
591    /// # Failure
592    ///
593    /// Will return `Err` if the executed statement returns rows (in which case
594    /// `query` should be used instead), or the underlying SQLite call fails.
595    #[inline]
596    pub fn raw_execute(&mut self) -> Result<usize> {
597        self.execute_with_bound_parameters()
598    }
599
600    /// Low level API to get `Rows` for this query given that all parameters
601    /// were bound explicitly with the [`Statement::raw_bind_parameter`] API.
602    ///
603    /// # Caveats
604    ///
605    /// Any unbound parameters will have `NULL` as their value.
606    ///
607    /// This should not generally be used outside special cases, and
608    /// functions in the [`Statement::query`] family should be preferred.
609    ///
610    /// Note that if the SQL does not return results, [`Statement::raw_execute`]
611    /// should be used instead.
612    #[inline]
613    pub fn raw_query(&mut self) -> Rows<'_> {
614        Rows::new(self)
615    }
616
617    // generic because many of these branches can constant fold away.
618    fn bind_parameter<P: ?Sized + ToSql>(&self, param: &P, ndx: usize) -> Result<()> {
619        let value = param.to_sql()?;
620
621        let ptr = unsafe { self.stmt.ptr() };
622        let value = match value {
623            ToSqlOutput::Borrowed(v) => v,
624            ToSqlOutput::Owned(ref v) => ValueRef::from(v),
625
626            #[cfg(feature = "blob")]
627            ToSqlOutput::ZeroBlob(len) => {
628                // TODO sqlite3_bind_zeroblob64 // 3.8.11
629                return self
630                    .conn
631                    .decode_result(unsafe { ffi::sqlite3_bind_zeroblob(ptr, ndx as c_int, len) });
632            }
633            #[cfg(feature = "functions")]
634            ToSqlOutput::Arg(_) => {
635                return Err(err!(ffi::SQLITE_MISUSE, "Unsupported value \"{value:?}\""));
636            }
637            #[cfg(feature = "array")]
638            ToSqlOutput::Array(a) => {
639                return self.conn.decode_result(unsafe {
640                    ffi::sqlite3_bind_pointer(
641                        ptr,
642                        ndx as c_int,
643                        Rc::into_raw(a) as *mut c_void,
644                        ARRAY_TYPE,
645                        Some(free_array),
646                    )
647                });
648            }
649        };
650        self.conn.decode_result(match value {
651            ValueRef::Null => unsafe { ffi::sqlite3_bind_null(ptr, ndx as c_int) },
652            ValueRef::Integer(i) => unsafe { ffi::sqlite3_bind_int64(ptr, ndx as c_int, i) },
653            ValueRef::Real(r) => unsafe { ffi::sqlite3_bind_double(ptr, ndx as c_int, r) },
654            ValueRef::Text(s) => unsafe {
655                let (c_str, len, destructor) = str_for_sqlite(s)?;
656                // TODO sqlite3_bind_text64 // 3.8.7
657                ffi::sqlite3_bind_text(ptr, ndx as c_int, c_str, len, destructor)
658            },
659            ValueRef::Blob(b) => unsafe {
660                let length = len_as_c_int(b.len())?;
661                if length == 0 {
662                    ffi::sqlite3_bind_zeroblob(ptr, ndx as c_int, 0)
663                } else {
664                    // TODO sqlite3_bind_blob64 // 3.8.7
665                    ffi::sqlite3_bind_blob(
666                        ptr,
667                        ndx as c_int,
668                        b.as_ptr().cast::<c_void>(),
669                        length,
670                        ffi::SQLITE_TRANSIENT(),
671                    )
672                }
673            },
674        })
675    }
676
677    #[inline]
678    fn execute_with_bound_parameters(&mut self) -> Result<usize> {
679        self.check_update()?;
680        let r = self.stmt.step();
681        let rr = self.stmt.reset();
682        match r {
683            ffi::SQLITE_DONE => match rr {
684                ffi::SQLITE_OK => Ok(self.conn.changes() as usize),
685                _ => Err(self.conn.decode_result(rr).unwrap_err()),
686            },
687            ffi::SQLITE_ROW => Err(Error::ExecuteReturnedResults),
688            _ => Err(self.conn.decode_result(r).unwrap_err()),
689        }
690    }
691
692    #[inline]
693    fn finalize_(&mut self) -> Result<()> {
694        let mut stmt = unsafe { RawStatement::new(ptr::null_mut()) };
695        mem::swap(&mut stmt, &mut self.stmt);
696        self.conn.decode_result(stmt.finalize())
697    }
698
699    #[cfg(feature = "extra_check")]
700    #[inline]
701    fn check_update(&self) -> Result<()> {
702        if self.column_count() > 0 && self.stmt.readonly() {
703            return Err(Error::ExecuteReturnedResults);
704        }
705        Ok(())
706    }
707
708    #[cfg(not(feature = "extra_check"))]
709    #[inline]
710    #[expect(clippy::unnecessary_wraps)]
711    fn check_update(&self) -> Result<()> {
712        Ok(())
713    }
714
715    /// Returns a string containing the SQL text of prepared statement with
716    /// bound parameters expanded.
717    pub fn expanded_sql(&self) -> Option<String> {
718        self.stmt
719            .expanded_sql()
720            .map(|s| s.to_string_lossy().to_string())
721    }
722
723    /// Get the value for one of the status counters for this statement.
724    #[inline]
725    pub fn get_status(&self, status: StatementStatus) -> i32 {
726        self.stmt.get_status(status, false)
727    }
728
729    /// Reset the value of one of the status counters for this statement,
730    #[inline]
731    /// returning the value it had before resetting.
732    pub fn reset_status(&self, status: StatementStatus) -> i32 {
733        self.stmt.get_status(status, true)
734    }
735
736    /// Returns 1 if the prepared statement is an EXPLAIN statement,
737    /// or 2 if the statement is an EXPLAIN QUERY PLAN,
738    /// or 0 if it is an ordinary statement or a NULL pointer.
739    #[inline]
740    #[cfg(feature = "modern_sqlite")] // 3.28.0
741    pub fn is_explain(&self) -> i32 {
742        self.stmt.is_explain()
743    }
744
745    /// Returns true if the statement is read only.
746    #[inline]
747    pub fn readonly(&self) -> bool {
748        self.stmt.readonly()
749    }
750
751    /// Safety: This is unsafe, because using `sqlite3_stmt` after the
752    /// connection has closed is illegal, but `RawStatement` does not enforce
753    /// this, as it loses our protective `'conn` lifetime bound.
754    #[inline]
755    pub(crate) unsafe fn into_raw(mut self) -> RawStatement {
756        let mut stmt = RawStatement::new(ptr::null_mut());
757        mem::swap(&mut stmt, &mut self.stmt);
758        stmt
759    }
760
761    /// Reset all bindings
762    pub fn clear_bindings(&mut self) {
763        self.stmt.clear_bindings();
764    }
765
766    pub(crate) unsafe fn ptr(&self) -> *mut ffi::sqlite3_stmt {
767        self.stmt.ptr()
768    }
769}
770
771impl fmt::Debug for Statement<'_> {
772    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
773        let sql = if self.stmt.is_null() {
774            Ok("")
775        } else {
776            self.stmt.sql().unwrap().to_str()
777        };
778        f.debug_struct("Statement")
779            .field("conn", self.conn)
780            .field("stmt", &self.stmt)
781            .field("sql", &sql)
782            .finish()
783    }
784}
785
786impl Drop for Statement<'_> {
787    #[expect(unused_must_use)]
788    #[inline]
789    fn drop(&mut self) {
790        self.finalize_();
791    }
792}
793
794impl Statement<'_> {
795    #[inline]
796    pub(super) fn new(conn: &Connection, stmt: RawStatement) -> Statement<'_> {
797        Statement { conn, stmt }
798    }
799
800    pub(super) fn value_ref(&self, col: usize) -> ValueRef<'_> {
801        let raw = unsafe { self.stmt.ptr() };
802
803        match self.stmt.column_type(col) {
804            ffi::SQLITE_NULL => ValueRef::Null,
805            ffi::SQLITE_INTEGER => {
806                ValueRef::Integer(unsafe { ffi::sqlite3_column_int64(raw, col as c_int) })
807            }
808            ffi::SQLITE_FLOAT => {
809                ValueRef::Real(unsafe { ffi::sqlite3_column_double(raw, col as c_int) })
810            }
811            ffi::SQLITE_TEXT => {
812                let s = unsafe {
813                    // Quoting from "Using SQLite" book:
814                    // To avoid problems, an application should first extract the desired type using
815                    // a sqlite3_column_xxx() function, and then call the
816                    // appropriate sqlite3_column_bytes() function.
817                    let text = ffi::sqlite3_column_text(raw, col as c_int);
818                    let len = ffi::sqlite3_column_bytes(raw, col as c_int);
819                    assert!(
820                        !text.is_null(),
821                        "unexpected SQLITE_TEXT column type with NULL data"
822                    );
823                    from_raw_parts(text.cast::<u8>(), len as usize)
824                };
825
826                ValueRef::Text(s)
827            }
828            ffi::SQLITE_BLOB => {
829                let (blob, len) = unsafe {
830                    (
831                        ffi::sqlite3_column_blob(raw, col as c_int),
832                        ffi::sqlite3_column_bytes(raw, col as c_int),
833                    )
834                };
835
836                assert!(
837                    len >= 0,
838                    "unexpected negative return from sqlite3_column_bytes"
839                );
840                if len > 0 {
841                    assert!(
842                        !blob.is_null(),
843                        "unexpected SQLITE_BLOB column type with NULL data"
844                    );
845                    ValueRef::Blob(unsafe { from_raw_parts(blob.cast::<u8>(), len as usize) })
846                } else {
847                    // The return value from sqlite3_column_blob() for a zero-length BLOB
848                    // is a NULL pointer.
849                    ValueRef::Blob(&[])
850                }
851            }
852            _ => unreachable!("sqlite3_column_type returned invalid value"),
853        }
854    }
855
856    #[inline]
857    pub(super) fn step(&self) -> Result<bool> {
858        match self.stmt.step() {
859            ffi::SQLITE_ROW => Ok(true),
860            ffi::SQLITE_DONE => Ok(false),
861            code => Err(self.conn.decode_result(code).unwrap_err()),
862        }
863    }
864
865    #[inline]
866    pub(super) fn reset(&self) -> Result<()> {
867        match self.stmt.reset() {
868            ffi::SQLITE_OK => Ok(()),
869            code => Err(self.conn.decode_result(code).unwrap_err()),
870        }
871    }
872}
873
874/// Prepared statement status counters.
875///
876/// See `https://www.sqlite.org/c3ref/c_stmtstatus_counter.html`
877/// for explanations of each.
878///
879/// Note that depending on your version of SQLite, all of these
880/// may not be available.
881#[repr(i32)]
882#[derive(Clone, Copy, PartialEq, Eq)]
883#[non_exhaustive]
884pub enum StatementStatus {
885    /// Equivalent to `SQLITE_STMTSTATUS_FULLSCAN_STEP`
886    FullscanStep = 1,
887    /// Equivalent to `SQLITE_STMTSTATUS_SORT`
888    Sort = 2,
889    /// Equivalent to `SQLITE_STMTSTATUS_AUTOINDEX`
890    AutoIndex = 3,
891    /// Equivalent to `SQLITE_STMTSTATUS_VM_STEP`
892    VmStep = 4,
893    /// Equivalent to `SQLITE_STMTSTATUS_REPREPARE` (3.20.0)
894    RePrepare = 5,
895    /// Equivalent to `SQLITE_STMTSTATUS_RUN` (3.20.0)
896    Run = 6,
897    /// Equivalent to `SQLITE_STMTSTATUS_FILTER_MISS`
898    FilterMiss = 7,
899    /// Equivalent to `SQLITE_STMTSTATUS_FILTER_HIT`
900    FilterHit = 8,
901    /// Equivalent to `SQLITE_STMTSTATUS_MEMUSED` (3.20.0)
902    MemUsed = 99,
903}
904
905#[cfg(test)]
906mod test {
907    use crate::types::ToSql;
908    use crate::{params_from_iter, Connection, Error, Result};
909
910    #[test]
911    fn test_execute_named() -> Result<()> {
912        let db = Connection::open_in_memory()?;
913        db.execute_batch("CREATE TABLE foo(x INTEGER)")?;
914
915        assert_eq!(
916            db.execute("INSERT INTO foo(x) VALUES (:x)", &[(":x", &1i32)])?,
917            1
918        );
919        assert_eq!(
920            db.execute("INSERT INTO foo(x) VALUES (:x)", &[(":x", &2i32)])?,
921            1
922        );
923        assert_eq!(
924            db.execute(
925                "INSERT INTO foo(x) VALUES (:x)",
926                crate::named_params! {":x": 3i32}
927            )?,
928            1
929        );
930
931        assert_eq!(
932            6i32,
933            db.query_row::<i32, _, _>(
934                "SELECT SUM(x) FROM foo WHERE x > :x",
935                &[(":x", &0i32)],
936                |r| r.get(0)
937            )?
938        );
939        assert_eq!(
940            5i32,
941            db.query_row::<i32, _, _>(
942                "SELECT SUM(x) FROM foo WHERE x > :x",
943                &[(":x", &1i32)],
944                |r| r.get(0)
945            )?
946        );
947        Ok(())
948    }
949
950    #[test]
951    fn test_stmt_execute_named() -> Result<()> {
952        let db = Connection::open_in_memory()?;
953        let sql = "CREATE TABLE test (id INTEGER PRIMARY KEY NOT NULL, name TEXT NOT NULL, flag \
954                   INTEGER)";
955        db.execute_batch(sql)?;
956
957        let mut stmt = db.prepare("INSERT INTO test (name) VALUES (:name)")?;
958        stmt.execute(&[(":name", "one")])?;
959        stmt.execute(vec![(":name", "one")].as_slice())?;
960
961        let mut stmt = db.prepare("SELECT COUNT(*) FROM test WHERE name = :name")?;
962        assert_eq!(
963            2i32,
964            stmt.query_row::<i32, _, _>(&[(":name", "one")], |r| r.get(0))?
965        );
966        Ok(())
967    }
968
969    #[test]
970    fn test_query_named() -> Result<()> {
971        let db = Connection::open_in_memory()?;
972        let sql = r#"
973        CREATE TABLE test (id INTEGER PRIMARY KEY NOT NULL, name TEXT NOT NULL, flag INTEGER);
974        INSERT INTO test(id, name) VALUES (1, "one");
975        "#;
976        db.execute_batch(sql)?;
977
978        let mut stmt = db.prepare("SELECT id FROM test where name = :name")?;
979        let mut rows = stmt.query(&[(":name", "one")])?;
980        let id: Result<i32> = rows.next()?.unwrap().get(0);
981        assert_eq!(Ok(1), id);
982        Ok(())
983    }
984
985    #[test]
986    fn test_query_map_named() -> Result<()> {
987        let db = Connection::open_in_memory()?;
988        let sql = r#"
989        CREATE TABLE test (id INTEGER PRIMARY KEY NOT NULL, name TEXT NOT NULL, flag INTEGER);
990        INSERT INTO test(id, name) VALUES (1, "one");
991        "#;
992        db.execute_batch(sql)?;
993
994        let mut stmt = db.prepare("SELECT id FROM test where name = :name")?;
995        let mut rows = stmt.query_map(&[(":name", "one")], |row| {
996            let id: Result<i32> = row.get(0);
997            id.map(|i| 2 * i)
998        })?;
999
1000        let doubled_id: i32 = rows.next().unwrap()?;
1001        assert_eq!(2, doubled_id);
1002        Ok(())
1003    }
1004
1005    #[test]
1006    fn test_query_and_then_by_name() -> Result<()> {
1007        let db = Connection::open_in_memory()?;
1008        let sql = r#"
1009        CREATE TABLE test (id INTEGER PRIMARY KEY NOT NULL, name TEXT NOT NULL, flag INTEGER);
1010        INSERT INTO test(id, name) VALUES (1, "one");
1011        INSERT INTO test(id, name) VALUES (2, "one");
1012        "#;
1013        db.execute_batch(sql)?;
1014
1015        let mut stmt = db.prepare("SELECT id FROM test where name = :name ORDER BY id ASC")?;
1016        let mut rows = stmt.query_and_then(&[(":name", "one")], |row| {
1017            let id: i32 = row.get(0)?;
1018            if id == 1 {
1019                Ok(id)
1020            } else {
1021                Err(Error::SqliteSingleThreadedMode)
1022            }
1023        })?;
1024
1025        // first row should be Ok
1026        let doubled_id: i32 = rows.next().unwrap()?;
1027        assert_eq!(1, doubled_id);
1028
1029        // second row should be an `Err`
1030        #[expect(clippy::match_wild_err_arm)]
1031        match rows.next().unwrap() {
1032            Ok(_) => panic!("invalid Ok"),
1033            Err(Error::SqliteSingleThreadedMode) => (),
1034            Err(_) => panic!("invalid Err"),
1035        }
1036        Ok(())
1037    }
1038
1039    #[test]
1040    fn test_unbound_parameters_are_null() -> Result<()> {
1041        let db = Connection::open_in_memory()?;
1042        let sql = "CREATE TABLE test (x TEXT, y TEXT)";
1043        db.execute_batch(sql)?;
1044
1045        let mut stmt = db.prepare("INSERT INTO test (x, y) VALUES (:x, :y)")?;
1046        stmt.execute(&[(":x", "one")])?;
1047
1048        let result: Option<String> = db.one_column("SELECT y FROM test WHERE x = 'one'", [])?;
1049        assert!(result.is_none());
1050        Ok(())
1051    }
1052
1053    #[test]
1054    fn test_raw_binding() -> Result<()> {
1055        let db = Connection::open_in_memory()?;
1056        db.execute_batch("CREATE TABLE test (name TEXT, value INTEGER)")?;
1057        {
1058            let mut stmt = db.prepare("INSERT INTO test (name, value) VALUES (:name, ?3)")?;
1059
1060            stmt.raw_bind_parameter(c":name", "example")?;
1061            stmt.raw_bind_parameter(":name", "example")?;
1062            stmt.raw_bind_parameter(3, 50i32)?;
1063            let n = stmt.raw_execute()?;
1064            assert_eq!(n, 1);
1065        }
1066
1067        {
1068            let mut stmt = db.prepare("SELECT name, value FROM test WHERE value = ?2")?;
1069            stmt.raw_bind_parameter(2, 50)?;
1070            let mut rows = stmt.raw_query();
1071            {
1072                let row = rows.next()?.unwrap();
1073                let name: String = row.get(0)?;
1074                assert_eq!(name, "example");
1075                let value: i32 = row.get(1)?;
1076                assert_eq!(value, 50);
1077            }
1078            assert!(rows.next()?.is_none());
1079        }
1080
1081        Ok(())
1082    }
1083
1084    #[test]
1085    fn test_unbound_parameters_are_reused() -> Result<()> {
1086        let db = Connection::open_in_memory()?;
1087        let sql = "CREATE TABLE test (x TEXT, y TEXT)";
1088        db.execute_batch(sql)?;
1089
1090        let mut stmt = db.prepare("INSERT INTO test (x, y) VALUES (:x, :y)")?;
1091        stmt.execute(&[(":x", "one")])?;
1092        stmt.execute(&[(c":y", "two")])?;
1093
1094        let result: String = db.one_column("SELECT x FROM test WHERE y = 'two'", [])?;
1095        assert_eq!(result, "one");
1096        Ok(())
1097    }
1098
1099    #[test]
1100    fn test_insert() -> Result<()> {
1101        let db = Connection::open_in_memory()?;
1102        db.execute_batch("CREATE TABLE foo(x INTEGER UNIQUE)")?;
1103        let mut stmt = db.prepare("INSERT OR IGNORE INTO foo (x) VALUES (?1)")?;
1104        assert_eq!(stmt.insert([1i32])?, 1);
1105        assert_eq!(stmt.insert([2i32])?, 2);
1106        match stmt.insert([1i32]).unwrap_err() {
1107            Error::StatementChangedRows(0) => (),
1108            err => panic!("Unexpected error {err}"),
1109        }
1110        let mut multi = db.prepare("INSERT INTO foo (x) SELECT 3 UNION ALL SELECT 4")?;
1111        match multi.insert([]).unwrap_err() {
1112            Error::StatementChangedRows(2) => (),
1113            err => panic!("Unexpected error {err}"),
1114        }
1115        Ok(())
1116    }
1117
1118    #[test]
1119    fn test_insert_different_tables() -> Result<()> {
1120        // Test for https://github.com/rusqlite/rusqlite/issues/171
1121        let db = Connection::open_in_memory()?;
1122        db.execute_batch(
1123            r"
1124            CREATE TABLE foo(x INTEGER);
1125            CREATE TABLE bar(x INTEGER);
1126        ",
1127        )?;
1128
1129        assert_eq!(db.prepare("INSERT INTO foo VALUES (10)")?.insert([])?, 1);
1130        assert_eq!(db.prepare("INSERT INTO bar VALUES (10)")?.insert([])?, 1);
1131        Ok(())
1132    }
1133
1134    #[test]
1135    fn test_exists() -> Result<()> {
1136        let db = Connection::open_in_memory()?;
1137        let sql = "BEGIN;
1138                   CREATE TABLE foo(x INTEGER);
1139                   INSERT INTO foo VALUES(1);
1140                   INSERT INTO foo VALUES(2);
1141                   END;";
1142        db.execute_batch(sql)?;
1143        let mut stmt = db.prepare("SELECT 1 FROM foo WHERE x = ?1")?;
1144        assert!(stmt.exists([1i32])?);
1145        assert!(stmt.exists([2i32])?);
1146        assert!(!stmt.exists([0i32])?);
1147        Ok(())
1148    }
1149    #[test]
1150    fn test_tuple_params() -> Result<()> {
1151        let db = Connection::open_in_memory()?;
1152        let s = db.query_row("SELECT printf('[%s]', ?1)", ("abc",), |r| {
1153            r.get::<_, String>(0)
1154        })?;
1155        assert_eq!(s, "[abc]");
1156        let s = db.query_row(
1157            "SELECT printf('%d %s %d', ?1, ?2, ?3)",
1158            (1i32, "abc", 2i32),
1159            |r| r.get::<_, String>(0),
1160        )?;
1161        assert_eq!(s, "1 abc 2");
1162        let s = db.query_row(
1163            "SELECT printf('%d %s %d %d', ?1, ?2, ?3, ?4)",
1164            (1, "abc", 2i32, 4i64),
1165            |r| r.get::<_, String>(0),
1166        )?;
1167        assert_eq!(s, "1 abc 2 4");
1168        #[rustfmt::skip]
1169        let bigtup = (
1170            0, "a", 1, "b", 2, "c", 3, "d",
1171            4, "e", 5, "f", 6, "g", 7, "h",
1172        );
1173        let query = "SELECT printf(
1174            '%d %s | %d %s | %d %s | %d %s || %d %s | %d %s | %d %s | %d %s',
1175            ?1, ?2, ?3, ?4,
1176            ?5, ?6, ?7, ?8,
1177            ?9, ?10, ?11, ?12,
1178            ?13, ?14, ?15, ?16
1179        )";
1180        let s = db.query_row(query, bigtup, |r| r.get::<_, String>(0))?;
1181        assert_eq!(s, "0 a | 1 b | 2 c | 3 d || 4 e | 5 f | 6 g | 7 h");
1182        Ok(())
1183    }
1184
1185    #[test]
1186    fn test_query_row() -> Result<()> {
1187        let db = Connection::open_in_memory()?;
1188        let sql = "BEGIN;
1189                   CREATE TABLE foo(x INTEGER, y INTEGER);
1190                   INSERT INTO foo VALUES(1, 3);
1191                   INSERT INTO foo VALUES(2, 4);
1192                   END;";
1193        db.execute_batch(sql)?;
1194        let mut stmt = db.prepare("SELECT y FROM foo WHERE x = ?1")?;
1195        let y: Result<i64> = stmt.query_row([1i32], |r| r.get(0));
1196        assert_eq!(3i64, y?);
1197        Ok(())
1198    }
1199
1200    #[test]
1201    fn query_one() -> Result<()> {
1202        let db = Connection::open_in_memory()?;
1203        db.execute_batch("CREATE TABLE foo(x INTEGER, y INTEGER);")?;
1204        let mut stmt = db.prepare("SELECT y FROM foo WHERE x = ?1")?;
1205        let y: Result<i64> = stmt.query_one([1i32], |r| r.get(0));
1206        assert_eq!(Error::QueryReturnedNoRows, y.unwrap_err());
1207        db.execute_batch("INSERT INTO foo VALUES(1, 3);")?;
1208        let y: Result<i64> = stmt.query_one([1i32], |r| r.get(0));
1209        assert_eq!(3i64, y?);
1210        db.execute_batch("INSERT INTO foo VALUES(1, 3);")?;
1211        let y: Result<i64> = stmt.query_one([1i32], |r| r.get(0));
1212        assert_eq!(Error::QueryReturnedMoreThanOneRow, y.unwrap_err());
1213        Ok(())
1214    }
1215
1216    #[test]
1217    fn test_query_by_column_name() -> Result<()> {
1218        let db = Connection::open_in_memory()?;
1219        let sql = "BEGIN;
1220                   CREATE TABLE foo(x INTEGER, y INTEGER);
1221                   INSERT INTO foo VALUES(1, 3);
1222                   END;";
1223        db.execute_batch(sql)?;
1224        let mut stmt = db.prepare("SELECT y FROM foo")?;
1225        let y: Result<i64> = stmt.query_row([], |r| r.get("y"));
1226        assert_eq!(3i64, y?);
1227        Ok(())
1228    }
1229
1230    #[test]
1231    fn test_query_by_column_name_ignore_case() -> Result<()> {
1232        let db = Connection::open_in_memory()?;
1233        let sql = "BEGIN;
1234                   CREATE TABLE foo(x INTEGER, y INTEGER);
1235                   INSERT INTO foo VALUES(1, 3);
1236                   END;";
1237        db.execute_batch(sql)?;
1238        let mut stmt = db.prepare("SELECT y as Y FROM foo")?;
1239        let y: Result<i64> = stmt.query_row([], |r| r.get("y"));
1240        assert_eq!(3i64, y?);
1241        Ok(())
1242    }
1243
1244    #[test]
1245    fn test_expanded_sql() -> Result<()> {
1246        let db = Connection::open_in_memory()?;
1247        let stmt = db.prepare("SELECT ?1")?;
1248        stmt.bind_parameter(&1, 1)?;
1249        assert_eq!(Some("SELECT 1".to_owned()), stmt.expanded_sql());
1250        Ok(())
1251    }
1252
1253    #[test]
1254    fn test_bind_parameters() -> Result<()> {
1255        let db = Connection::open_in_memory()?;
1256        // dynamic slice:
1257        db.query_row(
1258            "SELECT ?1, ?2, ?3",
1259            [&1u8 as &dyn ToSql, &"one", &Some("one")],
1260            |row| row.get::<_, u8>(0),
1261        )?;
1262        // existing collection:
1263        let data = vec![1, 2, 3];
1264        db.query_row("SELECT ?1, ?2, ?3", params_from_iter(&data), |row| {
1265            row.get::<_, u8>(0)
1266        })?;
1267        db.query_row(
1268            "SELECT ?1, ?2, ?3",
1269            params_from_iter(data.as_slice()),
1270            |row| row.get::<_, u8>(0),
1271        )?;
1272        db.query_row("SELECT ?1, ?2, ?3", params_from_iter(data), |row| {
1273            row.get::<_, u8>(0)
1274        })?;
1275
1276        use std::collections::BTreeSet;
1277        let data: BTreeSet<String> = ["one", "two", "three"]
1278            .iter()
1279            .map(|s| (*s).to_string())
1280            .collect();
1281        db.query_row("SELECT ?1, ?2, ?3", params_from_iter(&data), |row| {
1282            row.get::<_, String>(0)
1283        })?;
1284
1285        let data = [0; 3];
1286        db.query_row("SELECT ?1, ?2, ?3", params_from_iter(&data), |row| {
1287            row.get::<_, u8>(0)
1288        })?;
1289        db.query_row("SELECT ?1, ?2, ?3", params_from_iter(data.iter()), |row| {
1290            row.get::<_, u8>(0)
1291        })?;
1292        Ok(())
1293    }
1294
1295    #[test]
1296    fn test_parameter_name() -> Result<()> {
1297        let db = Connection::open_in_memory()?;
1298        db.execute_batch("CREATE TABLE test (name TEXT, value INTEGER)")?;
1299        let stmt = db.prepare("INSERT INTO test (name, value) VALUES (:name, ?3)")?;
1300        assert_eq!(stmt.parameter_name(0), None);
1301        assert_eq!(stmt.parameter_name(1), Some(":name"));
1302        assert_eq!(stmt.parameter_name(2), None);
1303        Ok(())
1304    }
1305
1306    #[test]
1307    fn test_empty_stmt() -> Result<()> {
1308        let conn = Connection::open_in_memory()?;
1309        let mut stmt = conn.prepare("")?;
1310        assert_eq!(0, stmt.column_count());
1311        stmt.parameter_index("test")?;
1312        let err = stmt.step().unwrap_err();
1313        assert_eq!(err.sqlite_error_code(), Some(crate::ErrorCode::ApiMisuse));
1314        // error msg is different with sqlcipher, so we use assert_ne:
1315        assert_ne!(err.to_string(), "not an error".to_owned());
1316        stmt.reset()?; // SQLITE_OMIT_AUTORESET = false
1317        stmt.execute([]).unwrap_err();
1318        Ok(())
1319    }
1320
1321    #[test]
1322    fn test_comment_stmt() -> Result<()> {
1323        let conn = Connection::open_in_memory()?;
1324        conn.prepare("/*SELECT 1;*/")?;
1325        Ok(())
1326    }
1327
1328    #[test]
1329    fn test_comment_and_sql_stmt() -> Result<()> {
1330        let conn = Connection::open_in_memory()?;
1331        let stmt = conn.prepare("/*...*/ SELECT 1;")?;
1332        assert_eq!(1, stmt.column_count());
1333        Ok(())
1334    }
1335
1336    #[test]
1337    fn test_semi_colon_stmt() -> Result<()> {
1338        let conn = Connection::open_in_memory()?;
1339        let stmt = conn.prepare(";")?;
1340        assert_eq!(0, stmt.column_count());
1341        Ok(())
1342    }
1343
1344    #[test]
1345    fn test_utf16_conversion() -> Result<()> {
1346        let db = Connection::open_in_memory()?;
1347        db.pragma_update(None, "encoding", "UTF-16le")?;
1348        let encoding: String = db.pragma_query_value(None, "encoding", |row| row.get(0))?;
1349        assert_eq!("UTF-16le", encoding);
1350        db.execute_batch("CREATE TABLE foo(x TEXT)")?;
1351        let expected = "ใƒ†ใ‚นใƒˆ";
1352        db.execute("INSERT INTO foo(x) VALUES (?1)", [&expected])?;
1353        let actual: String = db.one_column("SELECT x FROM foo", [])?;
1354        assert_eq!(expected, actual);
1355        Ok(())
1356    }
1357
1358    #[test]
1359    fn test_nul_byte() -> Result<()> {
1360        let db = Connection::open_in_memory()?;
1361        let expected = "a\x00b";
1362        let actual: String = db.one_column("SELECT ?1", [expected])?;
1363        assert_eq!(expected, actual);
1364        Ok(())
1365    }
1366
1367    #[test]
1368    #[cfg(feature = "modern_sqlite")]
1369    fn is_explain() -> Result<()> {
1370        let db = Connection::open_in_memory()?;
1371        let stmt = db.prepare("SELECT 1;")?;
1372        assert_eq!(0, stmt.is_explain());
1373        Ok(())
1374    }
1375
1376    #[test]
1377    fn readonly() -> Result<()> {
1378        let db = Connection::open_in_memory()?;
1379        let stmt = db.prepare("SELECT 1;")?;
1380        assert!(stmt.readonly());
1381        Ok(())
1382    }
1383
1384    #[test]
1385    #[cfg(feature = "modern_sqlite")] // SQLite >= 3.38.0
1386    fn test_error_offset() -> Result<()> {
1387        use crate::ffi::ErrorCode;
1388        let db = Connection::open_in_memory()?;
1389        let r = db.execute_batch("SELECT INVALID_FUNCTION;");
1390        match r.unwrap_err() {
1391            Error::SqlInputError { error, offset, .. } => {
1392                assert_eq!(error.code, ErrorCode::Unknown);
1393                assert_eq!(offset, 7);
1394            }
1395            err => panic!("Unexpected error {err}"),
1396        }
1397        Ok(())
1398    }
1399}