1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
// Copyright 2016 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
//! Functionality shared by operations on private keys (ECC keygen and
//! ECDSA signing).
use super::{ops::*, verify_affine_point_is_on_the_curve};
use crate::{arithmetic::montgomery::R, ec, error, limb, rand};
/// Generates a random scalar in the range [1, n).
pub fn random_scalar(
ops: &PrivateKeyOps,
rng: &dyn rand::SecureRandom,
) -> Result<Scalar, error::Unspecified> {
let mut bytes = [0; ec::SCALAR_MAX_BYTES];
let bytes = &mut bytes[..ops.common.len()];
generate_private_scalar_bytes(ops, rng, bytes)?;
scalar_from_big_endian_bytes(ops, bytes)
}
pub fn generate_private_scalar_bytes(
ops: &PrivateKeyOps,
rng: &dyn rand::SecureRandom,
out: &mut [u8],
) -> Result<(), error::Unspecified> {
// [NSA Suite B Implementer's Guide to ECDSA] Appendix A.1.2, and
// [NSA Suite B Implementer's Guide to NIST SP 800-56A] Appendix B.2,
// "Key Pair Generation by Testing Candidates".
//
// [NSA Suite B Implementer's Guide to ECDSA]: doc/ecdsa.pdf
// [NSA Suite B Implementer's Guide to NIST SP 800-56A]: doc/ecdh.pdf
// TODO: The NSA guide also suggests, in appendix B.1, another mechanism
// that would avoid the need to use `rng.fill()` more than once. It works
// by generating an extra 64 bits of random bytes and then reducing the
// output (mod n). Supposedly, this removes enough of the bias towards
// small values from the modular reduction, but it isn't obvious that it is
// sufficient. TODO: Figure out what we can do to mitigate the bias issue
// and switch to the other mechanism.
let candidate = out;
// XXX: The value 100 was chosen to match OpenSSL due to uncertainty of
// what specific value would be better, but it seems bad to try 100 times.
for _ in 0..100 {
// NSA Guide Steps 1, 2, and 3.
//
// Since we calculate the length ourselves, it is pointless to check
// it, since we can only check it by doing the same calculation.
// NSA Guide Step 4.
//
// The requirement that the random number generator has the
// requested security strength is delegated to `rng`.
rng.fill(candidate)?;
// NSA Guide Steps 5, 6, and 7.
if check_scalar_big_endian_bytes(ops, candidate).is_err() {
continue;
}
// NSA Guide Step 8 is done in `public_from_private()`.
// NSA Guide Step 9.
return Ok(());
}
Err(error::Unspecified)
}
// The underlying X25519 and Ed25519 code uses an [u8; 32] to store the private
// key. To make the ECDH and ECDSA code similar to that, we also store the
// private key that way, which means we have to convert it to a Scalar whenever
// we need to use it.
#[inline]
pub fn private_key_as_scalar(ops: &PrivateKeyOps, private_key: &ec::Seed) -> Scalar {
// This cannot fail because we know the private key is valid.
scalar_from_big_endian_bytes(ops, private_key.bytes_less_safe()).unwrap()
}
pub fn check_scalar_big_endian_bytes(
ops: &PrivateKeyOps,
bytes: &[u8],
) -> Result<(), error::Unspecified> {
debug_assert_eq!(bytes.len(), ops.common.len());
scalar_from_big_endian_bytes(ops, bytes).map(|_| ())
}
// Parses a fixed-length (zero-padded) big-endian-encoded scalar in the range
// [1, n). This is constant-time with respect to the actual value *only if* the
// value is actually in range. In other words, this won't leak anything about a
// valid value, but it might leak small amounts of information about an invalid
// value (which constraint it failed).
pub fn scalar_from_big_endian_bytes(
ops: &PrivateKeyOps,
bytes: &[u8],
) -> Result<Scalar, error::Unspecified> {
// [NSA Suite B Implementer's Guide to ECDSA] Appendix A.1.2, and
// [NSA Suite B Implementer's Guide to NIST SP 800-56A] Appendix B.2,
// "Key Pair Generation by Testing Candidates".
//
// [NSA Suite B Implementer's Guide to ECDSA]: doc/ecdsa.pdf
// [NSA Suite B Implementer's Guide to NIST SP 800-56A]: doc/ecdh.pdf
//
// Steps 5, 6, and 7.
//
// XXX: The NSA guide says that we should verify that the random scalar is
// in the range [0, n - 1) and then add one to it so that it is in the range
// [1, n). Instead, we verify that the scalar is in the range [1, n). This
// way, we avoid needing to compute or store the value (n - 1), we avoid the
// need to implement a function to add one to a scalar, and we avoid needing
// to convert the scalar back into an array of bytes.
scalar_parse_big_endian_fixed_consttime(ops.common, untrusted::Input::from(bytes))
}
pub fn public_from_private(
ops: &PrivateKeyOps,
public_out: &mut [u8],
my_private_key: &ec::Seed,
) -> Result<(), error::Unspecified> {
let elem_and_scalar_bytes = ops.common.len();
debug_assert_eq!(public_out.len(), 1 + (2 * elem_and_scalar_bytes));
let my_private_key = private_key_as_scalar(ops, my_private_key);
let my_public_key = ops.point_mul_base(&my_private_key);
public_out[0] = 4; // Uncompressed encoding.
let (x_out, y_out) = public_out[1..].split_at_mut(elem_and_scalar_bytes);
// `big_endian_affine_from_jacobian` verifies that the point is not at
// infinity and is on the curve.
big_endian_affine_from_jacobian(ops, Some(x_out), Some(y_out), &my_public_key)
}
pub fn affine_from_jacobian(
ops: &PrivateKeyOps,
p: &Point,
) -> Result<(Elem<R>, Elem<R>), error::Unspecified> {
let z = ops.common.point_z(p);
// Since we restrict our private key to the range [1, n), the curve has
// prime order, and we verify that the peer's point is on the curve,
// there's no way that the result can be at infinity. But, use `assert!`
// instead of `debug_assert!` anyway
assert!(ops.common.elem_verify_is_not_zero(&z).is_ok());
let x = ops.common.point_x(p);
let y = ops.common.point_y(p);
let zz_inv = ops.elem_inverse_squared(&z);
let x_aff = ops.common.elem_product(&x, &zz_inv);
// `y_aff` is needed to validate the point is on the curve. It is also
// needed in the non-ECDH case where we need to output it.
let y_aff = {
let zzzz_inv = ops.common.elem_squared(&zz_inv);
let zzz_inv = ops.common.elem_product(&z, &zzzz_inv);
ops.common.elem_product(&y, &zzz_inv)
};
// If we validated our inputs correctly and then computed (x, y, z), then
// (x, y, z) will be on the curve. See
// `verify_affine_point_is_on_the_curve_scaled` for the motivation.
verify_affine_point_is_on_the_curve(ops.common, (&x_aff, &y_aff))?;
Ok((x_aff, y_aff))
}
pub fn big_endian_affine_from_jacobian(
ops: &PrivateKeyOps,
x_out: Option<&mut [u8]>,
y_out: Option<&mut [u8]>,
p: &Point,
) -> Result<(), error::Unspecified> {
let (x_aff, y_aff) = affine_from_jacobian(ops, p)?;
if let Some(x_out) = x_out {
let x = ops.common.elem_unencoded(&x_aff);
limb::big_endian_from_limbs(ops.leak_limbs(&x), x_out);
}
if let Some(y_out) = y_out {
let y = ops.common.elem_unencoded(&y_aff);
limb::big_endian_from_limbs(ops.leak_limbs(&y), y_out);
}
Ok(())
}