1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
// Copyright 2016-2023 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

use super::{
    elem::{binary_op, binary_op_assign},
    elem_sqr_mul, elem_sqr_mul_acc, Modulus, *,
};

pub static COMMON_OPS: CommonOps = CommonOps {
    num_limbs: 384 / LIMB_BITS,

    q: Modulus {
        p: limbs_from_hex("fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000ffffffff"),
        rr: limbs_from_hex("10000000200000000fffffffe000000000000000200000000fffffffe00000001"),
    },
    n: Elem::from_hex("ffffffffffffffffffffffffffffffffffffffffffffffffc7634d81f4372ddf581a0db248b0a77aecec196accc52973"),

    a: Elem::from_hex("fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffbfffffffc0000000000000003fffffffc"),
    b: Elem::from_hex("cd08114b604fbff9b62b21f41f022094e3374bee94938ae277f2209b1920022ef729add87a4c32ec081188719d412dcc"),

    elem_mul_mont: p384_elem_mul_mont,
    elem_sqr_mont: p384_elem_sqr_mont,

    point_add_jacobian_impl: p384_point_add,
};

pub(super) static GENERATOR: (Elem<R>, Elem<R>) = (
    Elem::from_hex("4d3aadc2299e1513812ff723614ede2b6454868459a30eff879c3afc541b4d6e20e378e2a0d6ce383dd0756649c0b528"),
    Elem::from_hex("2b78abc25a15c5e9dd8002263969a840c6c3521968f4ffd98bade7562e83b050a1bfa8bf7bb4a9ac23043dad4b03a4fe"),
);

pub static PRIVATE_KEY_OPS: PrivateKeyOps = PrivateKeyOps {
    common: &COMMON_OPS,
    elem_inv_squared: p384_elem_inv_squared,
    point_mul_base_impl: p384_point_mul_base_impl,
    point_mul_impl: p384_point_mul,
};

fn p384_elem_inv_squared(a: &Elem<R>) -> Elem<R> {
    // Calculate a**-2 (mod q) == a**(q - 3) (mod q)
    //
    // The exponent (q - 3) is:
    //
    //    0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe\
    //      ffffffff0000000000000000fffffffc

    #[inline]
    fn sqr_mul(a: &Elem<R>, squarings: usize, b: &Elem<R>) -> Elem<R> {
        elem_sqr_mul(&COMMON_OPS, a, squarings, b)
    }

    #[inline]
    fn sqr_mul_acc(a: &mut Elem<R>, squarings: usize, b: &Elem<R>) {
        elem_sqr_mul_acc(&COMMON_OPS, a, squarings, b)
    }

    let b_1 = &a;
    let b_11 = sqr_mul(b_1, 1, b_1);
    let b_111 = sqr_mul(&b_11, 1, b_1);
    let f_11 = sqr_mul(&b_111, 3, &b_111);
    let fff = sqr_mul(&f_11, 6, &f_11);
    let fff_111 = sqr_mul(&fff, 3, &b_111);
    let fffffff_11 = sqr_mul(&fff_111, 15, &fff_111);

    let fffffffffffffff = sqr_mul(&fffffff_11, 30, &fffffff_11);

    let ffffffffffffffffffffffffffffff = sqr_mul(&fffffffffffffff, 60, &fffffffffffffff);

    // ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
    let mut acc = sqr_mul(
        &ffffffffffffffffffffffffffffff,
        120,
        &ffffffffffffffffffffffffffffff,
    );

    // fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff_111
    sqr_mul_acc(&mut acc, 15, &fff_111);

    // fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff
    sqr_mul_acc(&mut acc, 1 + 30, &fffffff_11);
    sqr_mul_acc(&mut acc, 2, &b_11);

    // fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff
    // 0000000000000000fffffff_11
    sqr_mul_acc(&mut acc, 64 + 30, &fffffff_11);

    // fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff
    // 0000000000000000fffffffc
    COMMON_OPS.elem_square(&mut acc);
    COMMON_OPS.elem_square(&mut acc);

    acc
}

fn p384_point_mul_base_impl(a: &Scalar) -> Point {
    // XXX: Not efficient. TODO: Precompute multiples of the generator.
    PRIVATE_KEY_OPS.point_mul(a, &GENERATOR)
}

pub static PUBLIC_KEY_OPS: PublicKeyOps = PublicKeyOps {
    common: &COMMON_OPS,
};

pub static SCALAR_OPS: ScalarOps = ScalarOps {
    common: &COMMON_OPS,
    scalar_mul_mont: p384_scalar_mul_mont,
};

pub static PUBLIC_SCALAR_OPS: PublicScalarOps = PublicScalarOps {
    scalar_ops: &SCALAR_OPS,
    public_key_ops: &PUBLIC_KEY_OPS,
    twin_mul: |g_scalar, p_scalar, p_xy| {
        twin_mul_inefficient(&PRIVATE_KEY_OPS, g_scalar, p_scalar, p_xy)
    },

    q_minus_n: Elem::from_hex("389cb27e0bc8d21fa7e5f24cb74f58851313e696333ad68c"),

    // TODO: Use an optimized variable-time implementation.
    scalar_inv_to_mont_vartime: |s| PRIVATE_SCALAR_OPS.scalar_inv_to_mont(s),
};

pub static PRIVATE_SCALAR_OPS: PrivateScalarOps = PrivateScalarOps {
    scalar_ops: &SCALAR_OPS,

    oneRR_mod_n: Scalar::from_hex("c84ee012b39bf213fb05b7a28266895d40d49174aab1cc5bc3e483afcb82947ff3d81e5df1aa4192d319b2419b409a9"),
    scalar_inv_to_mont: p384_scalar_inv_to_mont,
};

fn p384_scalar_inv_to_mont(a: Scalar<R>) -> Scalar<R> {
    // Calculate the modular inverse of scalar |a| using Fermat's Little
    // Theorem:
    //
    //    a**-1 (mod n) == a**(n - 2) (mod n)
    //
    // The exponent (n - 2) is:
    //
    //    0xffffffffffffffffffffffffffffffffffffffffffffffffc7634d81f4372ddf\
    //      581a0db248b0a77aecec196accc52971

    fn mul(a: &Scalar<R>, b: &Scalar<R>) -> Scalar<R> {
        binary_op(p384_scalar_mul_mont, a, b)
    }

    fn sqr(a: &Scalar<R>) -> Scalar<R> {
        binary_op(p384_scalar_mul_mont, a, a)
    }

    fn sqr_mut(a: &mut Scalar<R>) {
        unary_op_from_binary_op_assign(p384_scalar_mul_mont, a);
    }

    // Returns (`a` squared `squarings` times) * `b`.
    fn sqr_mul(a: &Scalar<R>, squarings: usize, b: &Scalar<R>) -> Scalar<R> {
        debug_assert!(squarings >= 1);
        let mut tmp = sqr(a);
        for _ in 1..squarings {
            sqr_mut(&mut tmp);
        }
        mul(&tmp, b)
    }

    // Sets `acc` = (`acc` squared `squarings` times) * `b`.
    fn sqr_mul_acc(acc: &mut Scalar<R>, squarings: usize, b: &Scalar<R>) {
        debug_assert!(squarings >= 1);
        for _ in 0..squarings {
            sqr_mut(acc);
        }
        binary_op_assign(p384_scalar_mul_mont, acc, b)
    }

    // Indexes into `d`.
    const B_1: usize = 0;
    const B_11: usize = 1;
    const B_101: usize = 2;
    const B_111: usize = 3;
    const B_1001: usize = 4;
    const B_1011: usize = 5;
    const B_1101: usize = 6;
    const B_1111: usize = 7;
    const DIGIT_COUNT: usize = 8;

    let mut d = [Scalar::zero(); DIGIT_COUNT];
    d[B_1] = a;
    let b_10 = sqr(&d[B_1]);
    for i in B_11..DIGIT_COUNT {
        d[i] = mul(&d[i - 1], &b_10);
    }

    let ff = sqr_mul(&d[B_1111], 0 + 4, &d[B_1111]);
    let ffff = sqr_mul(&ff, 0 + 8, &ff);
    let ffffffff = sqr_mul(&ffff, 0 + 16, &ffff);

    let ffffffffffffffff = sqr_mul(&ffffffff, 0 + 32, &ffffffff);

    let ffffffffffffffffffffffff = sqr_mul(&ffffffffffffffff, 0 + 32, &ffffffff);

    // ffffffffffffffffffffffffffffffffffffffffffffffff
    let mut acc = sqr_mul(&ffffffffffffffffffffffff, 0 + 96, &ffffffffffffffffffffffff);

    // The rest of the exponent, in binary, is:
    //
    //    1100011101100011010011011000000111110100001101110010110111011111
    //    0101100000011010000011011011001001001000101100001010011101111010
    //    1110110011101100000110010110101011001100110001010010100101110001

    #[allow(clippy::cast_possible_truncation)]
    static REMAINING_WINDOWS: [(u8, u8); 39] = [
        (2, B_11 as u8),
        (3 + 3, B_111 as u8),
        (1 + 2, B_11 as u8),
        (3 + 2, B_11 as u8),
        (1 + 4, B_1001 as u8),
        (4, B_1011 as u8),
        (6 + 4, B_1111 as u8),
        (3, B_101 as u8),
        (4 + 1, B_1 as u8),
        (4, B_1011 as u8),
        (4, B_1001 as u8),
        (1 + 4, B_1101 as u8),
        (4, B_1101 as u8),
        (4, B_1111 as u8),
        (1 + 4, B_1011 as u8),
        (6 + 4, B_1101 as u8),
        (5 + 4, B_1101 as u8),
        (4, B_1011 as u8),
        (2 + 4, B_1001 as u8),
        (2 + 1, B_1 as u8),
        (3 + 4, B_1011 as u8),
        (4 + 3, B_101 as u8),
        (2 + 3, B_111 as u8),
        (1 + 4, B_1111 as u8),
        (1 + 4, B_1011 as u8),
        (4, B_1011 as u8),
        (2 + 3, B_111 as u8),
        (1 + 2, B_11 as u8),
        (5 + 2, B_11 as u8),
        (2 + 4, B_1011 as u8),
        (1 + 3, B_101 as u8),
        (1 + 2, B_11 as u8),
        (2 + 2, B_11 as u8),
        (2 + 2, B_11 as u8),
        (3 + 3, B_101 as u8),
        (2 + 3, B_101 as u8),
        (2 + 3, B_101 as u8),
        (2, B_11 as u8),
        (3 + 1, B_1 as u8),
    ];

    for &(squarings, digit) in &REMAINING_WINDOWS[..] {
        sqr_mul_acc(&mut acc, usize::from(squarings), &d[usize::from(digit)]);
    }

    acc
}

unsafe extern "C" fn p384_elem_sqr_mont(
    r: *mut Limb,   // [COMMON_OPS.num_limbs]
    a: *const Limb, // [COMMON_OPS.num_limbs]
) {
    // XXX: Inefficient. TODO: Make a dedicated squaring routine.
    p384_elem_mul_mont(r, a, a);
}

prefixed_extern! {
    fn p384_elem_mul_mont(
        r: *mut Limb,   // [COMMON_OPS.num_limbs]
        a: *const Limb, // [COMMON_OPS.num_limbs]
        b: *const Limb, // [COMMON_OPS.num_limbs]
    );

    fn p384_point_add(
        r: *mut Limb,   // [3][COMMON_OPS.num_limbs]
        a: *const Limb, // [3][COMMON_OPS.num_limbs]
        b: *const Limb, // [3][COMMON_OPS.num_limbs]
    );
    fn p384_point_mul(
        r: *mut Limb,          // [3][COMMON_OPS.num_limbs]
        p_scalar: *const Limb, // [COMMON_OPS.num_limbs]
        p_x: *const Limb,      // [COMMON_OPS.num_limbs]
        p_y: *const Limb,      // [COMMON_OPS.num_limbs]
    );

    fn p384_scalar_mul_mont(
        r: *mut Limb,   // [COMMON_OPS.num_limbs]
        a: *const Limb, // [COMMON_OPS.num_limbs]
        b: *const Limb, // [COMMON_OPS.num_limbs]
    );
}