use crate::{arithmetic::limbs_from_hex, arithmetic::montgomery::*, error, limb::*};
use core::marker::PhantomData;
pub use self::elem::*;
pub type Elem<E> = elem::Elem<Q, E>;
#[derive(Clone, Copy)]
pub enum Q {}
pub type Scalar<E = Unencoded> = elem::Elem<N, E>;
#[derive(Clone, Copy)]
pub enum N {}
pub struct Point {
xyz: [Limb; 3 * MAX_LIMBS],
}
impl Point {
pub fn new_at_infinity() -> Self {
Self {
xyz: [0; 3 * MAX_LIMBS],
}
}
}
pub struct CommonOps {
num_limbs: usize,
q: Modulus,
n: Elem<Unencoded>,
pub a: Elem<R>, pub b: Elem<R>,
elem_mul_mont: unsafe extern "C" fn(r: *mut Limb, a: *const Limb, b: *const Limb),
elem_sqr_mont: unsafe extern "C" fn(r: *mut Limb, a: *const Limb),
point_add_jacobian_impl: unsafe extern "C" fn(r: *mut Limb, a: *const Limb, b: *const Limb),
}
impl CommonOps {
pub fn len(&self) -> usize {
self.num_limbs * LIMB_BYTES
}
#[cfg(test)]
pub(super) fn n_limbs(&self) -> &[Limb] {
&self.n.limbs[..self.num_limbs]
}
#[inline]
pub fn elem_add<E: Encoding>(&self, a: &mut Elem<E>, b: &Elem<E>) {
let num_limbs = self.num_limbs;
limbs_add_assign_mod(
&mut a.limbs[..num_limbs],
&b.limbs[..num_limbs],
&self.q.p[..num_limbs],
);
}
#[inline]
pub fn elems_are_equal(&self, a: &Elem<R>, b: &Elem<R>) -> LimbMask {
limbs_equal_limbs_consttime(&a.limbs[..self.num_limbs], &b.limbs[..self.num_limbs])
}
#[inline]
pub fn elem_unencoded(&self, a: &Elem<R>) -> Elem<Unencoded> {
const ONE: Elem<Unencoded> = Elem::from_hex("1");
self.elem_product(a, &ONE)
}
#[inline]
pub fn elem_mul(&self, a: &mut Elem<R>, b: &Elem<R>) {
binary_op_assign(self.elem_mul_mont, a, b)
}
#[inline]
pub fn elem_product<EA: Encoding, EB: Encoding>(
&self,
a: &Elem<EA>,
b: &Elem<EB>,
) -> Elem<<(EA, EB) as ProductEncoding>::Output>
where
(EA, EB): ProductEncoding,
{
mul_mont(self.elem_mul_mont, a, b)
}
#[inline]
pub fn elem_square(&self, a: &mut Elem<R>) {
unary_op_assign(self.elem_sqr_mont, a);
}
#[inline]
pub fn elem_squared(&self, a: &Elem<R>) -> Elem<R> {
unary_op(self.elem_sqr_mont, a)
}
#[inline]
pub fn is_zero<M, E: Encoding>(&self, a: &elem::Elem<M, E>) -> bool {
limbs_are_zero_constant_time(&a.limbs[..self.num_limbs]) == LimbMask::True
}
pub fn elem_verify_is_not_zero(&self, a: &Elem<R>) -> Result<(), error::Unspecified> {
if self.is_zero(a) {
Err(error::Unspecified)
} else {
Ok(())
}
}
pub fn point_sum(&self, a: &Point, b: &Point) -> Point {
let mut r = Point::new_at_infinity();
unsafe {
(self.point_add_jacobian_impl)(r.xyz.as_mut_ptr(), a.xyz.as_ptr(), b.xyz.as_ptr())
}
r
}
pub fn point_x(&self, p: &Point) -> Elem<R> {
let mut r = Elem::zero();
r.limbs[..self.num_limbs].copy_from_slice(&p.xyz[0..self.num_limbs]);
r
}
pub fn point_y(&self, p: &Point) -> Elem<R> {
let mut r = Elem::zero();
r.limbs[..self.num_limbs].copy_from_slice(&p.xyz[self.num_limbs..(2 * self.num_limbs)]);
r
}
pub fn point_z(&self, p: &Point) -> Elem<R> {
let mut r = Elem::zero();
r.limbs[..self.num_limbs]
.copy_from_slice(&p.xyz[(2 * self.num_limbs)..(3 * self.num_limbs)]);
r
}
}
struct Modulus {
p: [Limb; MAX_LIMBS],
rr: [Limb; MAX_LIMBS],
}
pub struct PrivateKeyOps {
pub common: &'static CommonOps,
elem_inv_squared: fn(a: &Elem<R>) -> Elem<R>,
point_mul_base_impl: fn(a: &Scalar) -> Point,
point_mul_impl: unsafe extern "C" fn(
r: *mut Limb, p_scalar: *const Limb, p_x: *const Limb, p_y: *const Limb, ),
}
impl PrivateKeyOps {
pub fn leak_limbs<'a>(&self, a: &'a Elem<Unencoded>) -> &'a [Limb] {
&a.limbs[..self.common.num_limbs]
}
#[inline(always)]
pub fn point_mul_base(&self, a: &Scalar) -> Point {
(self.point_mul_base_impl)(a)
}
#[inline(always)]
pub fn point_mul(&self, p_scalar: &Scalar, (p_x, p_y): &(Elem<R>, Elem<R>)) -> Point {
let mut r = Point::new_at_infinity();
unsafe {
(self.point_mul_impl)(
r.xyz.as_mut_ptr(),
p_scalar.limbs.as_ptr(),
p_x.limbs.as_ptr(),
p_y.limbs.as_ptr(),
);
}
r
}
#[inline]
pub fn elem_inverse_squared(&self, a: &Elem<R>) -> Elem<R> {
(self.elem_inv_squared)(a)
}
}
pub struct PublicKeyOps {
pub common: &'static CommonOps,
}
impl PublicKeyOps {
pub fn elem_parse(&self, input: &mut untrusted::Reader) -> Result<Elem<R>, error::Unspecified> {
let encoded_value = input.read_bytes(self.common.len())?;
let parsed = elem_parse_big_endian_fixed_consttime(self.common, encoded_value)?;
let mut r = Elem::zero();
unsafe {
(self.common.elem_mul_mont)(
r.limbs.as_mut_ptr(),
parsed.limbs.as_ptr(),
self.common.q.rr.as_ptr(),
)
}
Ok(r)
}
}
pub struct ScalarOps {
pub common: &'static CommonOps,
scalar_mul_mont: unsafe extern "C" fn(r: *mut Limb, a: *const Limb, b: *const Limb),
}
impl ScalarOps {
pub fn scalar_bytes_len(&self) -> usize {
self.common.len()
}
pub fn leak_limbs<'s>(&self, s: &'s Scalar) -> &'s [Limb] {
&s.limbs[..self.common.num_limbs]
}
#[inline]
pub fn scalar_product<EA: Encoding, EB: Encoding>(
&self,
a: &Scalar<EA>,
b: &Scalar<EB>,
) -> Scalar<<(EA, EB) as ProductEncoding>::Output>
where
(EA, EB): ProductEncoding,
{
mul_mont(self.scalar_mul_mont, a, b)
}
}
pub struct PublicScalarOps {
pub scalar_ops: &'static ScalarOps,
pub public_key_ops: &'static PublicKeyOps,
pub twin_mul: fn(g_scalar: &Scalar, p_scalar: &Scalar, p_xy: &(Elem<R>, Elem<R>)) -> Point,
pub scalar_inv_to_mont_vartime: fn(s: &Scalar<Unencoded>) -> Scalar<R>,
pub q_minus_n: Elem<Unencoded>,
}
impl PublicScalarOps {
pub fn n(&self) -> &Elem<Unencoded> {
&self.scalar_ops.common.n
}
#[inline]
pub fn scalar_as_elem(&self, a: &Scalar) -> Elem<Unencoded> {
Elem {
limbs: a.limbs,
m: PhantomData,
encoding: PhantomData,
}
}
pub fn elem_equals_vartime(&self, a: &Elem<Unencoded>, b: &Elem<Unencoded>) -> bool {
a.limbs[..self.public_key_ops.common.num_limbs]
== b.limbs[..self.public_key_ops.common.num_limbs]
}
pub fn elem_less_than(&self, a: &Elem<Unencoded>, b: &Elem<Unencoded>) -> bool {
let num_limbs = self.public_key_ops.common.num_limbs;
limbs_less_than_limbs_vartime(&a.limbs[..num_limbs], &b.limbs[..num_limbs])
}
pub fn scalar_inv_to_mont_vartime(&self, s: &Scalar<Unencoded>) -> Scalar<R> {
(self.scalar_inv_to_mont_vartime)(s)
}
}
#[allow(non_snake_case)]
pub struct PrivateScalarOps {
pub scalar_ops: &'static ScalarOps,
oneRR_mod_n: Scalar<RR>, scalar_inv_to_mont: fn(a: Scalar<R>) -> Scalar<R>,
}
impl PrivateScalarOps {
pub fn to_mont(&self, s: &Scalar<Unencoded>) -> Scalar<R> {
self.scalar_ops.scalar_product(s, &self.oneRR_mod_n)
}
pub fn scalar_inv_to_mont(&self, a: &Scalar) -> Scalar<R> {
assert!(!self.scalar_ops.common.is_zero(a));
let a = self.to_mont(a);
(self.scalar_inv_to_mont)(a)
}
}
fn twin_mul_inefficient(
ops: &PrivateKeyOps,
g_scalar: &Scalar,
p_scalar: &Scalar,
p_xy: &(Elem<R>, Elem<R>),
) -> Point {
let scaled_g = ops.point_mul_base(g_scalar);
let scaled_p = ops.point_mul(p_scalar, p_xy);
ops.common.point_sum(&scaled_g, &scaled_p)
}
pub fn elem_reduced_to_scalar(ops: &CommonOps, elem: &Elem<Unencoded>) -> Scalar<Unencoded> {
let num_limbs = ops.num_limbs;
let mut r_limbs = elem.limbs;
limbs_reduce_once_constant_time(&mut r_limbs[..num_limbs], &ops.n.limbs[..num_limbs]);
Scalar {
limbs: r_limbs,
m: PhantomData,
encoding: PhantomData,
}
}
pub fn scalar_sum(ops: &CommonOps, a: &Scalar, mut b: Scalar) -> Scalar {
limbs_add_assign_mod(
&mut b.limbs[..ops.num_limbs],
&a.limbs[..ops.num_limbs],
&ops.n.limbs[..ops.num_limbs],
);
b
}
fn elem_sqr_mul(ops: &CommonOps, a: &Elem<R>, squarings: usize, b: &Elem<R>) -> Elem<R> {
debug_assert!(squarings >= 1);
let mut tmp = ops.elem_squared(a);
for _ in 1..squarings {
ops.elem_square(&mut tmp);
}
ops.elem_product(&tmp, b)
}
fn elem_sqr_mul_acc(ops: &CommonOps, acc: &mut Elem<R>, squarings: usize, b: &Elem<R>) {
debug_assert!(squarings >= 1);
for _ in 0..squarings {
ops.elem_square(acc);
}
ops.elem_mul(acc, b)
}
#[inline]
pub fn elem_parse_big_endian_fixed_consttime(
ops: &CommonOps,
bytes: untrusted::Input,
) -> Result<Elem<Unencoded>, error::Unspecified> {
parse_big_endian_fixed_consttime(ops, bytes, AllowZero::Yes, &ops.q.p[..ops.num_limbs])
}
#[inline]
pub fn scalar_parse_big_endian_fixed_consttime(
ops: &CommonOps,
bytes: untrusted::Input,
) -> Result<Scalar, error::Unspecified> {
parse_big_endian_fixed_consttime(ops, bytes, AllowZero::No, &ops.n.limbs[..ops.num_limbs])
}
#[inline]
pub fn scalar_parse_big_endian_variable(
ops: &CommonOps,
allow_zero: AllowZero,
bytes: untrusted::Input,
) -> Result<Scalar, error::Unspecified> {
let mut r = Scalar::zero();
parse_big_endian_in_range_and_pad_consttime(
bytes,
allow_zero,
&ops.n.limbs[..ops.num_limbs],
&mut r.limbs[..ops.num_limbs],
)?;
Ok(r)
}
pub fn scalar_parse_big_endian_partially_reduced_variable_consttime(
ops: &CommonOps,
bytes: untrusted::Input,
) -> Result<Scalar, error::Unspecified> {
let mut r = Scalar::zero();
{
let r = &mut r.limbs[..ops.num_limbs];
parse_big_endian_and_pad_consttime(bytes, r)?;
limbs_reduce_once_constant_time(r, &ops.n.limbs[..ops.num_limbs]);
}
Ok(r)
}
fn parse_big_endian_fixed_consttime<M>(
ops: &CommonOps,
bytes: untrusted::Input,
allow_zero: AllowZero,
max_exclusive: &[Limb],
) -> Result<elem::Elem<M, Unencoded>, error::Unspecified> {
if bytes.len() != ops.len() {
return Err(error::Unspecified);
}
let mut r = elem::Elem::zero();
parse_big_endian_in_range_and_pad_consttime(
bytes,
allow_zero,
max_exclusive,
&mut r.limbs[..ops.num_limbs],
)?;
Ok(r)
}
#[cfg(test)]
mod tests {
extern crate alloc;
use super::*;
use crate::test;
use alloc::{format, vec, vec::Vec};
const ZERO_SCALAR: Scalar = Scalar {
limbs: [0; MAX_LIMBS],
m: PhantomData,
encoding: PhantomData,
};
trait Convert<E: Encoding> {
fn convert(self, cops: &CommonOps) -> Elem<E>;
}
impl Convert<R> for Elem<R> {
fn convert(self, _cops: &CommonOps) -> Elem<R> {
self
}
}
impl Convert<Unencoded> for Elem<R> {
fn convert(self, cops: &CommonOps) -> Elem<Unencoded> {
cops.elem_unencoded(&self)
}
}
fn q_minus_n_plus_n_equals_0_test(ops: &PublicScalarOps) {
let cops = ops.scalar_ops.common;
let mut x = ops.q_minus_n;
cops.elem_add(&mut x, &cops.n);
assert!(cops.is_zero(&x));
}
#[test]
fn p256_q_minus_n_plus_n_equals_0_test() {
q_minus_n_plus_n_equals_0_test(&p256::PUBLIC_SCALAR_OPS);
}
#[test]
fn p384_q_minus_n_plus_n_equals_0_test() {
q_minus_n_plus_n_equals_0_test(&p384::PUBLIC_SCALAR_OPS);
}
#[test]
fn p256_elem_add_test() {
elem_add_test(
&p256::PUBLIC_SCALAR_OPS,
test_file!("ops/p256_elem_sum_tests.txt"),
);
}
#[test]
fn p384_elem_add_test() {
elem_add_test(
&p384::PUBLIC_SCALAR_OPS,
test_file!("ops/p384_elem_sum_tests.txt"),
);
}
fn elem_add_test(ops: &PublicScalarOps, test_file: test::File) {
test::run(test_file, |section, test_case| {
assert_eq!(section, "");
let cops = ops.public_key_ops.common;
let a = consume_elem(cops, test_case, "a");
let b = consume_elem(cops, test_case, "b");
let expected_sum = consume_elem(cops, test_case, "r");
let mut actual_sum = a;
ops.public_key_ops.common.elem_add(&mut actual_sum, &b);
assert_limbs_are_equal(cops, &actual_sum.limbs, &expected_sum.limbs);
let mut actual_sum = b;
ops.public_key_ops.common.elem_add(&mut actual_sum, &a);
assert_limbs_are_equal(cops, &actual_sum.limbs, &expected_sum.limbs);
Ok(())
})
}
#[test]
fn p384_elem_sub_test() {
prefixed_extern! {
fn p384_elem_sub(r: *mut Limb, a: *const Limb, b: *const Limb);
}
elem_sub_test(
&p384::COMMON_OPS,
p384_elem_sub,
test_file!("ops/p384_elem_sum_tests.txt"),
);
}
fn elem_sub_test(
ops: &CommonOps,
elem_sub: unsafe extern "C" fn(r: *mut Limb, a: *const Limb, b: *const Limb),
test_file: test::File,
) {
test::run(test_file, |section, test_case| {
assert_eq!(section, "");
let a = consume_elem(ops, test_case, "a");
let b = consume_elem(ops, test_case, "b");
let r = consume_elem(ops, test_case, "r");
let mut actual_difference = Elem::<R>::zero();
unsafe {
elem_sub(
actual_difference.limbs.as_mut_ptr(),
r.limbs.as_ptr(),
b.limbs.as_ptr(),
);
}
assert_limbs_are_equal(ops, &actual_difference.limbs, &a.limbs);
let mut actual_difference = Elem::<R>::zero();
unsafe {
elem_sub(
actual_difference.limbs.as_mut_ptr(),
r.limbs.as_ptr(),
a.limbs.as_ptr(),
);
}
assert_limbs_are_equal(ops, &actual_difference.limbs, &b.limbs);
Ok(())
})
}
#[test]
fn p384_elem_div_by_2_test() {
prefixed_extern! {
fn p384_elem_div_by_2(r: *mut Limb, a: *const Limb);
}
elem_div_by_2_test(
&p384::COMMON_OPS,
p384_elem_div_by_2,
test_file!("ops/p384_elem_div_by_2_tests.txt"),
);
}
fn elem_div_by_2_test(
ops: &CommonOps,
elem_div_by_2: unsafe extern "C" fn(r: *mut Limb, a: *const Limb),
test_file: test::File,
) {
test::run(test_file, |section, test_case| {
assert_eq!(section, "");
let a = consume_elem(ops, test_case, "a");
let r = consume_elem(ops, test_case, "r");
let mut actual_result = Elem::<R>::zero();
unsafe {
elem_div_by_2(actual_result.limbs.as_mut_ptr(), a.limbs.as_ptr());
}
assert_limbs_are_equal(ops, &actual_result.limbs, &r.limbs);
Ok(())
})
}
#[cfg(target_arch = "x86_64")]
#[test]
fn p256_elem_neg_test() {
prefixed_extern! {
fn ecp_nistz256_neg(r: *mut Limb, a: *const Limb);
}
elem_neg_test(
&p256::COMMON_OPS,
ecp_nistz256_neg,
test_file!("ops/p256_elem_neg_tests.txt"),
);
}
#[test]
fn p384_elem_neg_test() {
prefixed_extern! {
fn p384_elem_neg(r: *mut Limb, a: *const Limb);
}
elem_neg_test(
&p384::COMMON_OPS,
p384_elem_neg,
test_file!("ops/p384_elem_neg_tests.txt"),
);
}
fn elem_neg_test(
ops: &CommonOps,
elem_neg: unsafe extern "C" fn(r: *mut Limb, a: *const Limb),
test_file: test::File,
) {
test::run(test_file, |section, test_case| {
assert_eq!(section, "");
let a = consume_elem(ops, test_case, "a");
let b = consume_elem(ops, test_case, "b");
{
let mut actual_result = Elem::<R>::zero();
unsafe {
elem_neg(actual_result.limbs.as_mut_ptr(), a.limbs.as_ptr());
}
assert_limbs_are_equal(ops, &actual_result.limbs, &b.limbs);
}
{
let mut actual_result = Elem::<R>::zero();
unsafe {
elem_neg(actual_result.limbs.as_mut_ptr(), b.limbs.as_ptr());
}
assert_limbs_are_equal(ops, &actual_result.limbs, &a.limbs);
}
Ok(())
})
}
#[test]
fn p256_elem_mul_test() {
elem_mul_test(&p256::COMMON_OPS, test_file!("ops/p256_elem_mul_tests.txt"));
}
#[test]
fn p384_elem_mul_test() {
elem_mul_test(&p384::COMMON_OPS, test_file!("ops/p384_elem_mul_tests.txt"));
}
fn elem_mul_test(ops: &CommonOps, test_file: test::File) {
test::run(test_file, |section, test_case| {
assert_eq!(section, "");
let mut a = consume_elem(ops, test_case, "a");
let b = consume_elem(ops, test_case, "b");
let r = consume_elem(ops, test_case, "r");
ops.elem_mul(&mut a, &b);
assert_limbs_are_equal(ops, &a.limbs, &r.limbs);
Ok(())
})
}
#[test]
fn p256_scalar_mul_test() {
scalar_mul_test(
&p256::SCALAR_OPS,
test_file!("ops/p256_scalar_mul_tests.txt"),
);
}
#[test]
fn p384_scalar_mul_test() {
scalar_mul_test(
&p384::SCALAR_OPS,
test_file!("ops/p384_scalar_mul_tests.txt"),
);
}
fn scalar_mul_test(ops: &ScalarOps, test_file: test::File) {
test::run(test_file, |section, test_case| {
assert_eq!(section, "");
let cops = ops.common;
let a = consume_scalar(cops, test_case, "a");
let b = consume_scalar_mont(cops, test_case, "b");
let expected_result = consume_scalar(cops, test_case, "r");
let actual_result = ops.scalar_product(&a, &b);
assert_limbs_are_equal(cops, &actual_result.limbs, &expected_result.limbs);
Ok(())
})
}
#[test]
fn p256_scalar_square_test() {
prefixed_extern! {
fn p256_scalar_sqr_rep_mont(r: *mut Limb, a: *const Limb, rep: Limb);
}
scalar_square_test(
&p256::SCALAR_OPS,
p256_scalar_sqr_rep_mont,
test_file!("ops/p256_scalar_square_tests.txt"),
);
}
fn scalar_square_test(
ops: &ScalarOps,
sqr_rep: unsafe extern "C" fn(r: *mut Limb, a: *const Limb, rep: Limb),
test_file: test::File,
) {
test::run(test_file, |section, test_case| {
assert_eq!(section, "");
let cops = &ops.common;
let a = consume_scalar(cops, test_case, "a");
let expected_result = consume_scalar(cops, test_case, "r");
{
let mut actual_result: Scalar<R> = Scalar {
limbs: [0; MAX_LIMBS],
m: PhantomData,
encoding: PhantomData,
};
unsafe {
sqr_rep(actual_result.limbs.as_mut_ptr(), a.limbs.as_ptr(), 1);
}
assert_limbs_are_equal(cops, &actual_result.limbs, &expected_result.limbs);
}
{
let actual_result = ops.scalar_product(&a, &a);
assert_limbs_are_equal(cops, &actual_result.limbs, &expected_result.limbs);
}
Ok(())
})
}
#[test]
#[should_panic(expected = "!self.scalar_ops.common.is_zero(a)")]
fn p256_scalar_inv_to_mont_zero_panic_test() {
let _ = p256::PRIVATE_SCALAR_OPS.scalar_inv_to_mont(&ZERO_SCALAR);
}
#[test]
#[should_panic(expected = "!self.scalar_ops.common.is_zero(a)")]
fn p384_scalar_inv_to_mont_zero_panic_test() {
let _ = p384::PRIVATE_SCALAR_OPS.scalar_inv_to_mont(&ZERO_SCALAR);
}
#[test]
fn p256_point_sum_test() {
point_sum_test(
&p256::PRIVATE_KEY_OPS,
test_file!("ops/p256_point_sum_tests.txt"),
);
}
#[test]
fn p384_point_sum_test() {
point_sum_test(
&p384::PRIVATE_KEY_OPS,
test_file!("ops/p384_point_sum_tests.txt"),
);
}
fn point_sum_test(ops: &PrivateKeyOps, test_file: test::File) {
test::run(test_file, |section, test_case| {
assert_eq!(section, "");
let a = consume_jacobian_point(ops, test_case, "a");
let b = consume_jacobian_point(ops, test_case, "b");
let r_expected: TestPoint<R> = consume_point(ops, test_case, "r");
let r_actual = ops.common.point_sum(&a, &b);
assert_point_actual_equals_expected(ops, &r_actual, &r_expected);
Ok(())
});
}
#[test]
fn p256_point_sum_mixed_test() {
prefixed_extern! {
fn p256_point_add_affine(
r: *mut Limb, a: *const Limb, b: *const Limb, );
}
point_sum_mixed_test(
&p256::PRIVATE_KEY_OPS,
p256_point_add_affine,
test_file!("ops/p256_point_sum_mixed_tests.txt"),
);
}
fn point_sum_mixed_test(
ops: &PrivateKeyOps,
point_add_affine: unsafe extern "C" fn(
r: *mut Limb, a: *const Limb, b: *const Limb, ),
test_file: test::File,
) {
test::run(test_file, |section, test_case| {
assert_eq!(section, "");
let a = consume_jacobian_point(ops, test_case, "a");
let b = consume_affine_point(ops, test_case, "b");
let r_expected: TestPoint<R> = consume_point(ops, test_case, "r");
let mut r_actual = Point::new_at_infinity();
unsafe {
point_add_affine(r_actual.xyz.as_mut_ptr(), a.xyz.as_ptr(), b.xy.as_ptr());
}
assert_point_actual_equals_expected(ops, &r_actual, &r_expected);
Ok(())
});
}
#[test]
fn p256_point_double_test() {
prefixed_extern! {
fn p256_point_double(
r: *mut Limb, a: *const Limb, );
}
point_double_test(
&p256::PRIVATE_KEY_OPS,
p256_point_double,
test_file!("ops/p256_point_double_tests.txt"),
);
}
#[test]
fn p384_point_double_test() {
prefixed_extern! {
fn p384_point_double(
r: *mut Limb, a: *const Limb, );
}
point_double_test(
&p384::PRIVATE_KEY_OPS,
p384_point_double,
test_file!("ops/p384_point_double_tests.txt"),
);
}
fn point_double_test(
ops: &PrivateKeyOps,
point_double: unsafe extern "C" fn(
r: *mut Limb, a: *const Limb, ),
test_file: test::File,
) {
test::run(test_file, |section, test_case| {
assert_eq!(section, "");
let a = consume_jacobian_point(ops, test_case, "a");
let r_expected: TestPoint<R> = consume_point(ops, test_case, "r");
let mut r_actual = Point::new_at_infinity();
unsafe {
point_double(r_actual.xyz.as_mut_ptr(), a.xyz.as_ptr());
}
assert_point_actual_equals_expected(ops, &r_actual, &r_expected);
Ok(())
});
}
#[test]
fn p256_point_mul_test() {
point_mul_base_tests(
&p256::PRIVATE_KEY_OPS,
|s| p256::PRIVATE_KEY_OPS.point_mul(s, &p256::GENERATOR),
test_file!("ops/p256_point_mul_base_tests.txt"),
);
}
#[test]
fn p384_point_mul_test() {
point_mul_base_tests(
&p384::PRIVATE_KEY_OPS,
|s| p384::PRIVATE_KEY_OPS.point_mul(s, &p384::GENERATOR),
test_file!("ops/p384_point_mul_base_tests.txt"),
);
}
#[test]
fn p256_point_mul_serialized_test() {
point_mul_serialized_test(
&p256::PRIVATE_KEY_OPS,
&p256::PUBLIC_KEY_OPS,
test_file!("ops/p256_point_mul_serialized_tests.txt"),
);
}
fn point_mul_serialized_test(
priv_ops: &PrivateKeyOps,
pub_ops: &PublicKeyOps,
test_file: test::File,
) {
let cops = pub_ops.common;
test::run(test_file, |section, test_case| {
assert_eq!(section, "");
let p_scalar = consume_scalar(cops, test_case, "p_scalar");
let p = test_case.consume_bytes("p");
let p = super::super::public_key::parse_uncompressed_point(
pub_ops,
untrusted::Input::from(&p),
)
.expect("valid point");
let expected_result = test_case.consume_bytes("r");
let product = priv_ops.point_mul(&p_scalar, &p);
let mut actual_result = vec![4u8; 1 + (2 * cops.len())];
{
let (x, y) = actual_result[1..].split_at_mut(cops.len());
super::super::private_key::big_endian_affine_from_jacobian(
priv_ops,
Some(x),
Some(y),
&product,
)
.expect("successful encoding");
}
assert_eq!(expected_result, actual_result);
Ok(())
})
}
#[test]
fn p256_point_mul_base_test() {
point_mul_base_tests(
&p256::PRIVATE_KEY_OPS,
|s| p256::PRIVATE_KEY_OPS.point_mul_base(s),
test_file!("ops/p256_point_mul_base_tests.txt"),
);
}
#[test]
fn p384_point_mul_base_test() {
point_mul_base_tests(
&p384::PRIVATE_KEY_OPS,
|s| p384::PRIVATE_KEY_OPS.point_mul_base(s),
test_file!("ops/p384_point_mul_base_tests.txt"),
);
}
pub(super) fn point_mul_base_tests(
ops: &PrivateKeyOps,
f: impl Fn(&Scalar) -> Point,
test_file: test::File,
) {
test::run(test_file, |section, test_case| {
assert_eq!(section, "");
let g_scalar = consume_scalar(ops.common, test_case, "g_scalar");
let expected_result: TestPoint<Unencoded> = consume_point(ops, test_case, "r");
let actual_result = f(&g_scalar);
assert_point_actual_equals_expected(ops, &actual_result, &expected_result);
Ok(())
})
}
fn assert_point_actual_equals_expected<E: Encoding>(
ops: &PrivateKeyOps,
actual_point: &Point,
expected_point: &TestPoint<E>,
) where
Elem<R>: Convert<E>,
{
let cops = ops.common;
let actual_x = &cops.point_x(actual_point);
let actual_y = &cops.point_y(actual_point);
let actual_z = &cops.point_z(actual_point);
match expected_point {
TestPoint::Infinity => {
let zero = Elem::zero();
assert_elems_are_equal(cops, actual_z, &zero);
}
TestPoint::Affine(expected_x, expected_y) => {
let zz_inv = ops.elem_inverse_squared(actual_z);
let x_aff = cops.elem_product(actual_x, &zz_inv);
let y_aff = {
let zzzz_inv = cops.elem_squared(&zz_inv);
let zzz_inv = cops.elem_product(actual_z, &zzzz_inv);
cops.elem_product(actual_y, &zzz_inv)
};
let x_aff = x_aff.convert(cops);
let y_aff = y_aff.convert(cops);
assert_elems_are_equal(cops, &x_aff, expected_x);
assert_elems_are_equal(cops, &y_aff, expected_y);
}
}
}
fn consume_jacobian_point(
ops: &PrivateKeyOps,
test_case: &mut test::TestCase,
name: &str,
) -> Point {
let input = test_case.consume_string(name);
let elems = input.split(", ").collect::<Vec<&str>>();
assert_eq!(elems.len(), 3);
let mut p = Point::new_at_infinity();
consume_point_elem(ops.common, &mut p.xyz, &elems, 0);
consume_point_elem(ops.common, &mut p.xyz, &elems, 1);
consume_point_elem(ops.common, &mut p.xyz, &elems, 2);
p
}
struct AffinePoint {
xy: [Limb; 2 * MAX_LIMBS],
}
fn consume_affine_point(
ops: &PrivateKeyOps,
test_case: &mut test::TestCase,
name: &str,
) -> AffinePoint {
let input = test_case.consume_string(name);
let elems = input.split(", ").collect::<Vec<&str>>();
assert_eq!(elems.len(), 2);
let mut p = AffinePoint {
xy: [0; 2 * MAX_LIMBS],
};
consume_point_elem(ops.common, &mut p.xy, &elems, 0);
consume_point_elem(ops.common, &mut p.xy, &elems, 1);
p
}
fn consume_point_elem(ops: &CommonOps, limbs_out: &mut [Limb], elems: &[&str], i: usize) {
let bytes = test::from_hex(elems[i]).unwrap();
let bytes = untrusted::Input::from(&bytes);
let r: Elem<Unencoded> = elem_parse_big_endian_fixed_consttime(ops, bytes).unwrap();
limbs_out[(i * ops.num_limbs)..((i + 1) * ops.num_limbs)]
.copy_from_slice(&r.limbs[..ops.num_limbs]);
}
enum TestPoint<E: Encoding> {
Infinity,
Affine(Elem<E>, Elem<E>),
}
fn consume_point<E: Encoding>(
ops: &PrivateKeyOps,
test_case: &mut test::TestCase,
name: &str,
) -> TestPoint<E> {
fn consume_point_elem<E: Encoding>(ops: &CommonOps, elems: &[&str], i: usize) -> Elem<E> {
let bytes = test::from_hex(elems[i]).unwrap();
let bytes = untrusted::Input::from(&bytes);
let unencoded: Elem<Unencoded> =
elem_parse_big_endian_fixed_consttime(ops, bytes).unwrap();
Elem {
limbs: unencoded.limbs,
m: PhantomData,
encoding: PhantomData,
}
}
let input = test_case.consume_string(name);
if input == "inf" {
return TestPoint::Infinity;
}
let elems = input.split(", ").collect::<Vec<&str>>();
assert_eq!(elems.len(), 2);
let x = consume_point_elem(ops.common, &elems, 0);
let y = consume_point_elem(ops.common, &elems, 1);
TestPoint::Affine(x, y)
}
fn assert_elems_are_equal<E: Encoding>(ops: &CommonOps, a: &Elem<E>, b: &Elem<E>) {
assert_limbs_are_equal(ops, &a.limbs, &b.limbs)
}
fn assert_limbs_are_equal(
ops: &CommonOps,
actual: &[Limb; MAX_LIMBS],
expected: &[Limb; MAX_LIMBS],
) {
if actual[..ops.num_limbs] != expected[..ops.num_limbs] {
let mut actual_s = alloc::string::String::new();
let mut expected_s = alloc::string::String::new();
for j in 0..ops.num_limbs {
let width = LIMB_BITS / 4;
let formatted = format!("{:0width$x}", actual[ops.num_limbs - j - 1]);
actual_s.push_str(&formatted);
let formatted = format!("{:0width$x}", expected[ops.num_limbs - j - 1]);
expected_s.push_str(&formatted);
}
panic!(
"Actual != Expected,\nActual = {}, Expected = {}",
actual_s, expected_s
);
}
}
fn consume_elem(ops: &CommonOps, test_case: &mut test::TestCase, name: &str) -> Elem<R> {
let bytes = consume_padded_bytes(ops, test_case, name);
let bytes = untrusted::Input::from(&bytes);
let r: Elem<Unencoded> = elem_parse_big_endian_fixed_consttime(ops, bytes).unwrap();
Elem {
limbs: r.limbs,
m: PhantomData,
encoding: PhantomData,
}
}
fn consume_scalar(ops: &CommonOps, test_case: &mut test::TestCase, name: &str) -> Scalar {
let bytes = test_case.consume_bytes(name);
let bytes = untrusted::Input::from(&bytes);
scalar_parse_big_endian_variable(ops, AllowZero::Yes, bytes).unwrap()
}
fn consume_scalar_mont(
ops: &CommonOps,
test_case: &mut test::TestCase,
name: &str,
) -> Scalar<R> {
let bytes = test_case.consume_bytes(name);
let bytes = untrusted::Input::from(&bytes);
let s = scalar_parse_big_endian_variable(ops, AllowZero::Yes, bytes).unwrap();
Scalar {
limbs: s.limbs,
m: PhantomData,
encoding: PhantomData,
}
}
fn consume_padded_bytes(
ops: &CommonOps,
test_case: &mut test::TestCase,
name: &str,
) -> Vec<u8> {
let unpadded_bytes = test_case.consume_bytes(name);
let mut bytes = vec![0; ops.len() - unpadded_bytes.len()];
bytes.extend(&unpadded_bytes);
bytes
}
}
mod elem;
pub mod p256;
pub mod p384;