1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
// Copyright 2016 Brian Smith.
// Portions Copyright (c) 2016, Google Inc.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

use super::{quic::Sample, Nonce};

#[cfg(any(
    test,
    not(any(
        target_arch = "aarch64",
        target_arch = "arm",
        target_arch = "x86",
        target_arch = "x86_64"
    ))
))]
mod fallback;

use crate::polyfill::ArraySplitMap;
use core::ops::RangeFrom;

#[derive(Clone)]
pub struct Key {
    words: [u32; KEY_LEN / 4],
}

impl Key {
    pub(super) fn new(value: [u8; KEY_LEN]) -> Self {
        Self {
            words: value.array_split_map(u32::from_le_bytes),
        }
    }
}

impl Key {
    #[inline]
    pub fn encrypt_in_place(&self, counter: Counter, in_out: &mut [u8]) {
        self.encrypt_less_safe(counter, in_out, 0..);
    }

    #[inline]
    pub fn encrypt_iv_xor_in_place(&self, iv: Iv, in_out: &mut [u8; 32]) {
        // It is safe to use `into_counter_for_single_block_less_safe()`
        // because `in_out` is exactly one block long.
        debug_assert!(in_out.len() <= BLOCK_LEN);
        self.encrypt_less_safe(iv.into_counter_for_single_block_less_safe(), in_out, 0..);
    }

    #[inline]
    pub fn new_mask(&self, sample: Sample) -> [u8; 5] {
        let mut out: [u8; 5] = [0; 5];
        let iv = Iv::assume_unique_for_key(sample);

        debug_assert!(out.len() <= BLOCK_LEN);
        self.encrypt_less_safe(iv.into_counter_for_single_block_less_safe(), &mut out, 0..);

        out
    }

    /// Analogous to `slice::copy_within()`.
    pub fn encrypt_within(&self, counter: Counter, in_out: &mut [u8], src: RangeFrom<usize>) {
        // XXX: The x86 and at least one branch of the ARM assembly language
        // code doesn't allow overlapping input and output unless they are
        // exactly overlapping. TODO: Figure out which branch of the ARM code
        // has this limitation and come up with a better solution.
        //
        // https://rt.openssl.org/Ticket/Display.html?id=4362
        if cfg!(any(target_arch = "arm", target_arch = "x86")) && src.start != 0 {
            let len = in_out.len() - src.start;
            in_out.copy_within(src, 0);
            self.encrypt_in_place(counter, &mut in_out[..len]);
        } else {
            self.encrypt_less_safe(counter, in_out, src);
        }
    }

    /// This is "less safe" because it skips the important check that `encrypt_within` does.
    /// Only call this with `src` equal to `0..` or from `encrypt_within`.
    #[inline]
    fn encrypt_less_safe(&self, counter: Counter, in_out: &mut [u8], src: RangeFrom<usize>) {
        #[cfg(any(
            target_arch = "aarch64",
            target_arch = "arm",
            target_arch = "x86",
            target_arch = "x86_64"
        ))]
        #[inline(always)]
        pub(super) fn ChaCha20_ctr32(
            key: &Key,
            counter: Counter,
            in_out: &mut [u8],
            src: RangeFrom<usize>,
        ) {
            let in_out_len = in_out.len().checked_sub(src.start).unwrap();

            // There's no need to worry if `counter` is incremented because it is
            // owned here and we drop immediately after the call.
            prefixed_extern! {
                fn ChaCha20_ctr32(
                    out: *mut u8,
                    in_: *const u8,
                    in_len: crate::c::size_t,
                    key: &[u32; KEY_LEN / 4],
                    counter: &Counter,
                );
            }
            unsafe {
                ChaCha20_ctr32(
                    in_out.as_mut_ptr(),
                    in_out[src].as_ptr(),
                    in_out_len,
                    key.words_less_safe(),
                    &counter,
                )
            }
        }

        #[cfg(not(any(
            target_arch = "aarch64",
            target_arch = "arm",
            target_arch = "x86",
            target_arch = "x86_64"
        )))]
        use fallback::ChaCha20_ctr32;

        ChaCha20_ctr32(self, counter, in_out, src);
    }

    #[inline]
    pub(super) fn words_less_safe(&self) -> &[u32; KEY_LEN / 4] {
        &self.words
    }
}

/// Counter || Nonce, all native endian.
#[repr(transparent)]
pub struct Counter([u32; 4]);

impl Counter {
    pub fn zero(nonce: Nonce) -> Self {
        Self::from_nonce_and_ctr(nonce, 0)
    }

    fn from_nonce_and_ctr(nonce: Nonce, ctr: u32) -> Self {
        let [n0, n1, n2] = nonce.as_ref().array_split_map(u32::from_le_bytes);
        Self([ctr, n0, n1, n2])
    }

    pub fn increment(&mut self) -> Iv {
        let iv = Iv(self.0);
        self.0[0] += 1;
        iv
    }

    /// This is "less safe" because it hands off management of the counter to
    /// the caller.
    #[cfg(any(
        test,
        not(any(
            target_arch = "aarch64",
            target_arch = "arm",
            target_arch = "x86",
            target_arch = "x86_64"
        ))
    ))]
    fn into_words_less_safe(self) -> [u32; 4] {
        self.0
    }
}

/// The IV for a single block encryption.
///
/// Intentionally not `Clone` to ensure each is used only once.
pub struct Iv([u32; 4]);

impl Iv {
    fn assume_unique_for_key(value: [u8; 16]) -> Self {
        Self(value.array_split_map(u32::from_le_bytes))
    }

    fn into_counter_for_single_block_less_safe(self) -> Counter {
        Counter(self.0)
    }
}

pub const KEY_LEN: usize = 32;

const BLOCK_LEN: usize = 64;

#[cfg(test)]
mod tests {
    extern crate alloc;

    use super::*;
    use crate::test;
    use alloc::vec;

    const MAX_ALIGNMENT_AND_OFFSET: (usize, usize) = (15, 259);
    const MAX_ALIGNMENT_AND_OFFSET_SUBSET: (usize, usize) =
        if cfg!(any(debug_assertions = "false", feature = "slow_tests")) {
            MAX_ALIGNMENT_AND_OFFSET
        } else {
            (0, 0)
        };

    #[test]
    fn chacha20_test_default() {
        // Always use `MAX_OFFSET` if we hav assembly code.
        let max_offset = if cfg!(any(
            target_arch = "aarch64",
            target_arch = "arm",
            target_arch = "x86",
            target_arch = "x86_64"
        )) {
            MAX_ALIGNMENT_AND_OFFSET
        } else {
            MAX_ALIGNMENT_AND_OFFSET_SUBSET
        };
        chacha20_test(max_offset, Key::encrypt_within);
    }

    // Smoketest the fallback implementation.
    #[test]
    fn chacha20_test_fallback() {
        chacha20_test(MAX_ALIGNMENT_AND_OFFSET_SUBSET, fallback::ChaCha20_ctr32);
    }

    // Verifies the encryption is successful when done on overlapping buffers.
    //
    // On some branches of the 32-bit x86 and ARM assembly code the in-place
    // operation fails in some situations where the input/output buffers are
    // not exactly overlapping. Such failures are dependent not only on the
    // degree of overlapping but also the length of the data. `encrypt_within`
    // works around that.
    fn chacha20_test(
        max_alignment_and_offset: (usize, usize),
        f: impl for<'k, 'i> Fn(&'k Key, Counter, &'i mut [u8], RangeFrom<usize>),
    ) {
        // Reuse a buffer to avoid slowing down the tests with allocations.
        let mut buf = vec![0u8; 1300];

        test::run(test_file!("chacha_tests.txt"), move |section, test_case| {
            assert_eq!(section, "");

            let key = test_case.consume_bytes("Key");
            let key: &[u8; KEY_LEN] = key.as_slice().try_into()?;
            let key = Key::new(*key);

            let ctr = test_case.consume_usize("Ctr");
            let nonce = test_case.consume_bytes("Nonce");
            let input = test_case.consume_bytes("Input");
            let output = test_case.consume_bytes("Output");

            // Run the test case over all prefixes of the input because the
            // behavior of ChaCha20 implementation changes dependent on the
            // length of the input.
            for len in 0..=input.len() {
                #[allow(clippy::cast_possible_truncation)]
                chacha20_test_case_inner(
                    &key,
                    &nonce,
                    ctr as u32,
                    &input[..len],
                    &output[..len],
                    &mut buf,
                    max_alignment_and_offset,
                    &f,
                );
            }

            Ok(())
        });
    }

    fn chacha20_test_case_inner(
        key: &Key,
        nonce: &[u8],
        ctr: u32,
        input: &[u8],
        expected: &[u8],
        buf: &mut [u8],
        (max_alignment, max_offset): (usize, usize),
        f: &impl for<'k, 'i> Fn(&'k Key, Counter, &'i mut [u8], RangeFrom<usize>),
    ) {
        const ARBITRARY: u8 = 123;

        for alignment in 0..=max_alignment {
            buf[..alignment].fill(ARBITRARY);
            let buf = &mut buf[alignment..];
            for offset in 0..=max_offset {
                let buf = &mut buf[..(offset + input.len())];
                buf[..offset].fill(ARBITRARY);
                let src = offset..;
                buf[src.clone()].copy_from_slice(input);

                let ctr = Counter::from_nonce_and_ctr(
                    Nonce::try_assume_unique_for_key(nonce).unwrap(),
                    ctr,
                );
                f(key, ctr, buf, src);
                assert_eq!(&buf[..input.len()], expected)
            }
        }
    }
}