1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at https://mozilla.org/MPL/2.0/. */

use std::cmp::{max, min};
use std::fmt;

use app_units::{Au, MAX_AU};
use log::debug;
use serde::Serialize;
use style::computed_values::float::T as StyleFloat;
use style::logical_geometry::{LogicalRect, LogicalSize, WritingMode};
use style::values::computed::Size;

use crate::block::FormattingContextType;
use crate::flow::{Flow, FlowFlags, GetBaseFlow, ImmutableFlowUtils};
use crate::persistent_list::PersistentList;

/// The kind of float: left or right.
#[derive(Clone, Copy, Debug, Serialize)]
pub enum FloatKind {
    Left,
    Right,
}

impl FloatKind {
    pub fn from_property(property: StyleFloat) -> Option<FloatKind> {
        match property {
            StyleFloat::None => None,
            StyleFloat::Left => Some(FloatKind::Left),
            StyleFloat::Right => Some(FloatKind::Right),
        }
    }
}

/// The kind of clearance: left, right, or both.
#[derive(Clone, Copy)]
pub enum ClearType {
    Left,
    Right,
    Both,
}

/// Information about a single float.
#[derive(Clone, Copy)]
struct Float {
    /// The boundaries of this float.
    bounds: LogicalRect<Au>,
    /// The kind of float: left or right.
    kind: FloatKind,
}

impl fmt::Debug for Float {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "bounds={:?} kind={:?}", self.bounds, self.kind)
    }
}

/// Information about the floats next to a flow.
#[derive(Clone)]
struct FloatList {
    /// Information about each of the floats here.
    floats: PersistentList<Float>,
    /// Cached copy of the maximum block-start offset of the float.
    max_block_start: Option<Au>,
}

impl FloatList {
    fn new() -> FloatList {
        FloatList {
            floats: PersistentList::new(),
            max_block_start: None,
        }
    }

    /// Returns true if the list is allocated and false otherwise. If false, there are guaranteed
    /// not to be any floats.
    fn is_present(&self) -> bool {
        self.floats.len() > 0
    }
}

impl fmt::Debug for FloatList {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(
            f,
            "max_block_start={:?} floats={}",
            self.max_block_start,
            self.floats.len()
        )?;
        for float in self.floats.iter() {
            write!(f, " {:?}", float)?;
        }
        Ok(())
    }
}

/// All the information necessary to place a float.
pub struct PlacementInfo {
    /// The dimensions of the float.
    pub size: LogicalSize<Au>,
    /// The minimum block-start of the float, as determined by earlier elements.
    pub ceiling: Au,
    /// The maximum inline-end position of the float, generally determined by the containing block.
    pub max_inline_size: Au,
    /// The kind of float.
    pub kind: FloatKind,
}

impl fmt::Debug for PlacementInfo {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(
            f,
            "size={:?} ceiling={:?} max_inline_size={:?} kind={:?}",
            self.size, self.ceiling, self.max_inline_size, self.kind
        )
    }
}

fn range_intersect(
    block_start_1: Au,
    block_end_1: Au,
    block_start_2: Au,
    block_end_2: Au,
) -> (Au, Au) {
    (
        max(block_start_1, block_start_2),
        min(block_end_1, block_end_2),
    )
}

/// Encapsulates information about floats. This is optimized to avoid allocation if there are
/// no floats, and to avoid copying when translating the list of floats downward.
#[derive(Clone)]
pub struct Floats {
    /// The list of floats.
    list: FloatList,
    /// The offset of the flow relative to the first float.
    offset: LogicalSize<Au>,
    /// The writing mode of these floats.
    pub writing_mode: WritingMode,
}

impl fmt::Debug for Floats {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        if !self.list.is_present() {
            write!(f, "[empty]")
        } else {
            write!(f, "offset={:?} floats={:?}", self.offset, self.list)
        }
    }
}

impl Floats {
    /// Creates a new `Floats` object.
    pub fn new(writing_mode: WritingMode) -> Floats {
        Floats {
            list: FloatList::new(),
            offset: LogicalSize::zero(writing_mode),
            writing_mode,
        }
    }

    /// Adjusts the recorded offset of the flow relative to the first float.
    pub fn translate(&mut self, delta: LogicalSize<Au>) {
        self.offset = self.offset + delta
    }

    /// Returns the position of the last float in flow coordinates.
    pub fn last_float_pos(&self) -> Option<LogicalRect<Au>> {
        self.list
            .floats
            .front()
            .map(|float| float.bounds.translate_by_size(self.offset))
    }

    /// Returns a rectangle that encloses the region from block-start to block-start + block-size,
    /// with inline-size small enough that it doesn't collide with any floats. max_x is the
    /// inline-size beyond which floats have no effect. (Generally this is the containing block
    /// inline-size.)
    pub fn available_rect(
        &self,
        block_start: Au,
        block_size: Au,
        max_x: Au,
    ) -> Option<LogicalRect<Au>> {
        let list = &self.list;
        let block_start = block_start - self.offset.block;

        debug!("available_rect: trying to find space at {:?}", block_start);

        // Relevant dimensions for the inline-end-most inline-start float
        let mut max_inline_start = Au(0) - self.offset.inline;
        let mut l_block_start = None;
        let mut l_block_end = None;
        // Relevant dimensions for the inline-start-most inline-end float
        let mut min_inline_end = max_x - self.offset.inline;
        let mut r_block_start = None;
        let mut r_block_end = None;

        // Find the float collisions for the given range in the block direction.
        for float in list.floats.iter() {
            debug!("available_rect: Checking for collision against float");
            let float_pos = float.bounds.start;
            let float_size = float.bounds.size;

            debug!("float_pos: {:?}, float_size: {:?}", float_pos, float_size);
            match float.kind {
                FloatKind::Left
                    if float_pos.i + float_size.inline > max_inline_start &&
                        float_pos.b + float_size.block > block_start &&
                        float_pos.b < block_start + block_size =>
                {
                    max_inline_start = float_pos.i + float_size.inline;

                    l_block_start = Some(float_pos.b);
                    l_block_end = Some(float_pos.b + float_size.block);

                    debug!(
                        "available_rect: collision with inline_start float: new \
                         max_inline_start is {:?}",
                        max_inline_start
                    );
                },
                FloatKind::Right
                    if float_pos.i < min_inline_end &&
                        float_pos.b + float_size.block > block_start &&
                        float_pos.b < block_start + block_size =>
                {
                    min_inline_end = float_pos.i;

                    r_block_start = Some(float_pos.b);
                    r_block_end = Some(float_pos.b + float_size.block);
                    debug!(
                        "available_rect: collision with inline_end float: new min_inline_end \
                         is {:?}",
                        min_inline_end
                    );
                },
                FloatKind::Left | FloatKind::Right => {},
            }
        }

        // Extend the vertical range of the rectangle to the closest floats.
        // If there are floats on both sides, take the intersection of the
        // two areas. Also make sure we never return a block-start smaller than the
        // given upper bound.
        let (block_start, block_end) =
            match (r_block_start, r_block_end, l_block_start, l_block_end) {
                (
                    Some(r_block_start),
                    Some(r_block_end),
                    Some(l_block_start),
                    Some(l_block_end),
                ) => range_intersect(
                    max(block_start, r_block_start),
                    r_block_end,
                    max(block_start, l_block_start),
                    l_block_end,
                ),
                (None, None, Some(l_block_start), Some(l_block_end)) => {
                    (max(block_start, l_block_start), l_block_end)
                },
                (Some(r_block_start), Some(r_block_end), None, None) => {
                    (max(block_start, r_block_start), r_block_end)
                },
                (None, None, None, None) => return None,
                _ => panic!("Reached unreachable state when computing float area"),
            };

        // FIXME(eatkinson): This assertion is too strong and fails in some cases. It is OK to
        // return negative inline-sizes since we check against that inline-end away, but we should
        // still understand why they occur and add a stronger assertion here.
        // assert!(max_inline-start < min_inline-end);

        assert!(block_start <= block_end, "Float position error");

        Some(LogicalRect::new(
            self.writing_mode,
            max_inline_start + self.offset.inline,
            block_start + self.offset.block,
            min_inline_end - max_inline_start,
            block_end - block_start,
        ))
    }

    /// Adds a new float to the list.
    pub fn add_float(&mut self, info: &PlacementInfo) {
        let new_info = PlacementInfo {
            size: info.size,
            ceiling: match self.list.max_block_start {
                None => info.ceiling,
                Some(max_block_start) => max(info.ceiling, max_block_start + self.offset.block),
            },
            max_inline_size: info.max_inline_size,
            kind: info.kind,
        };

        debug!("add_float: added float with info {:?}", new_info);

        let new_float = Float {
            bounds: LogicalRect::from_point_size(
                self.writing_mode,
                self.place_between_floats(&new_info).start - self.offset,
                info.size,
            ),
            kind: info.kind,
        };

        self.list.floats = self.list.floats.prepend_elem(new_float);
        self.list.max_block_start = match self.list.max_block_start {
            None => Some(new_float.bounds.start.b),
            Some(max_block_start) => Some(max(max_block_start, new_float.bounds.start.b)),
        }
    }

    /// Given the three sides of the bounding rectangle in the block-start direction, finds the
    /// largest block-size that will result in the rectangle not colliding with any floats. Returns
    /// `None` if that block-size is infinite.
    fn max_block_size_for_bounds(
        &self,
        inline_start: Au,
        block_start: Au,
        inline_size: Au,
    ) -> Option<Au> {
        let list = &self.list;

        let block_start = block_start - self.offset.block;
        let inline_start = inline_start - self.offset.inline;
        let mut max_block_size = None;

        for float in list.floats.iter() {
            if float.bounds.start.b + float.bounds.size.block > block_start &&
                float.bounds.start.i + float.bounds.size.inline > inline_start &&
                float.bounds.start.i < inline_start + inline_size
            {
                let new_y = float.bounds.start.b;
                max_block_size = Some(min(max_block_size.unwrap_or(new_y), new_y));
            }
        }

        max_block_size.map(|h| h + self.offset.block)
    }

    /// Given placement information, finds the closest place a fragment can be positioned without
    /// colliding with any floats.
    pub fn place_between_floats(&self, info: &PlacementInfo) -> LogicalRect<Au> {
        debug!("place_between_floats: Placing object with {:?}", info.size);

        // If no floats, use this fast path.
        if !self.list.is_present() {
            match info.kind {
                FloatKind::Left => {
                    return LogicalRect::new(
                        self.writing_mode,
                        Au(0),
                        info.ceiling,
                        info.max_inline_size,
                        MAX_AU,
                    );
                },
                FloatKind::Right => {
                    return LogicalRect::new(
                        self.writing_mode,
                        info.max_inline_size - info.size.inline,
                        info.ceiling,
                        info.max_inline_size,
                        MAX_AU,
                    );
                },
            }
        }

        // Can't go any higher than previous floats or previous elements in the document.
        let mut float_b = info.ceiling;
        loop {
            let maybe_location =
                self.available_rect(float_b, info.size.block, info.max_inline_size);
            debug!(
                "place_float: got available rect: {:?} for block-pos: {:?}",
                maybe_location, float_b
            );
            match maybe_location {
                // If there are no floats blocking us, return the current location
                // TODO(eatkinson): integrate with overflow
                None => {
                    return match info.kind {
                        FloatKind::Left => LogicalRect::new(
                            self.writing_mode,
                            Au(0),
                            float_b,
                            info.max_inline_size,
                            MAX_AU,
                        ),
                        FloatKind::Right => LogicalRect::new(
                            self.writing_mode,
                            info.max_inline_size - info.size.inline,
                            float_b,
                            info.max_inline_size,
                            MAX_AU,
                        ),
                    };
                },
                Some(rect) => {
                    assert_ne!(
                        rect.start.b + rect.size.block,
                        float_b,
                        "Non-terminating float placement"
                    );

                    // Place here if there is enough room
                    if rect.size.inline >= info.size.inline {
                        let block_size = self.max_block_size_for_bounds(
                            rect.start.i,
                            rect.start.b,
                            rect.size.inline,
                        );
                        let block_size = block_size.unwrap_or(MAX_AU);
                        return match info.kind {
                            FloatKind::Left => LogicalRect::new(
                                self.writing_mode,
                                rect.start.i,
                                float_b,
                                rect.size.inline,
                                block_size,
                            ),
                            FloatKind::Right => LogicalRect::new(
                                self.writing_mode,
                                rect.start.i + rect.size.inline - info.size.inline,
                                float_b,
                                rect.size.inline,
                                block_size,
                            ),
                        };
                    }

                    // Try to place at the next-lowest location.
                    // Need to be careful of fencepost errors.
                    float_b = rect.start.b + rect.size.block;
                },
            }
        }
    }

    pub fn clearance(&self, clear: ClearType) -> Au {
        let list = &self.list;
        let mut clearance = Au(0);
        for float in list.floats.iter() {
            match (clear, float.kind) {
                (ClearType::Left, FloatKind::Left) |
                (ClearType::Right, FloatKind::Right) |
                (ClearType::Both, _) => {
                    let b = self.offset.block + float.bounds.start.b + float.bounds.size.block;
                    clearance = max(clearance, b);
                },
                _ => {},
            }
        }
        clearance
    }

    pub fn is_present(&self) -> bool {
        self.list.is_present()
    }
}

/// The speculated inline sizes of floats flowing through or around a flow (depending on whether
/// the flow is a block formatting context). These speculations are always *upper bounds*; the
/// actual inline sizes might be less. Note that this implies that a speculated value of zero is a
/// guarantee that there will be no floats on that side.
///
/// This is used for two purposes: (a) determining whether we can lay out blocks in parallel; (b)
/// guessing the inline-sizes of block formatting contexts in an effort to lay them out in
/// parallel.
#[derive(Clone, Copy)]
pub struct SpeculatedFloatPlacement {
    /// The estimated inline size (an upper bound) of the left floats flowing through this flow.
    pub left: Au,
    /// The estimated inline size (an upper bound) of the right floats flowing through this flow.
    pub right: Au,
}

impl fmt::Debug for SpeculatedFloatPlacement {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "L {:?} R {:?}", self.left, self.right)
    }
}

impl SpeculatedFloatPlacement {
    /// Returns a `SpeculatedFloatPlacement` objects with both left and right speculated inline
    /// sizes initialized to zero.
    pub fn zero() -> SpeculatedFloatPlacement {
        SpeculatedFloatPlacement {
            left: Au(0),
            right: Au(0),
        }
    }

    /// Given the speculated inline size of the floats out for the inorder predecessor of this
    /// flow, computes the speculated inline size of the floats flowing in.
    pub fn compute_floats_in(&mut self, flow: &mut dyn Flow) {
        let base_flow = flow.base();
        if base_flow.flags.contains(FlowFlags::CLEARS_LEFT) {
            self.left = Au(0)
        }
        if base_flow.flags.contains(FlowFlags::CLEARS_RIGHT) {
            self.right = Au(0)
        }
    }

    /// Given the speculated inline size of the floats out for this flow's last child, computes the
    /// speculated inline size of the floats out for this flow.
    pub fn compute_floats_out(&mut self, flow: &mut dyn Flow) {
        if flow.is_block_like() {
            let block_flow = flow.as_block();
            if block_flow.formatting_context_type() != FormattingContextType::None {
                *self = block_flow.base.speculated_float_placement_in;
            } else {
                if self.left > Au(0) || self.right > Au(0) {
                    let speculated_inline_content_edge_offsets =
                        block_flow.fragment.guess_inline_content_edge_offsets();
                    if self.left > Au(0) && speculated_inline_content_edge_offsets.start > Au(0) {
                        self.left += speculated_inline_content_edge_offsets.start
                    }
                    if self.right > Au(0) && speculated_inline_content_edge_offsets.end > Au(0) {
                        self.right += speculated_inline_content_edge_offsets.end
                    }
                }

                self.left = max(
                    self.left,
                    block_flow.base.speculated_float_placement_in.left,
                );
                self.right = max(
                    self.right,
                    block_flow.base.speculated_float_placement_in.right,
                );
            }
        }

        let base_flow = flow.base();
        if !base_flow.flags.is_float() {
            return;
        }

        let mut float_inline_size = base_flow.intrinsic_inline_sizes.preferred_inline_size;
        if float_inline_size == Au(0) && flow.is_block_like() {
            // Hack: If the size of the float is not fixed, then there's no
            // way we can guess at its size now. So just pick an arbitrary
            // nonzero value (in this case, 1px) so that the layout
            // traversal logic will know that objects later in the document
            // might flow around this float.
            let inline_size = flow.as_block().fragment.style.content_inline_size();
            let fixed = match inline_size {
                Size::Auto => false,
                Size::LengthPercentage(ref lp) => {
                    lp.0.is_definitely_zero() || lp.0.maybe_to_used_value(None).is_some()
                },
            };
            if !fixed {
                float_inline_size = Au::from_px(1)
            }
        }

        match base_flow.flags.float_kind() {
            StyleFloat::None => {},
            StyleFloat::Left => self.left += float_inline_size,
            StyleFloat::Right => self.right += float_inline_size,
        }
    }

    /// Given a flow, computes the speculated inline size of the floats in of its first child.
    pub fn compute_floats_in_for_first_child(
        parent_flow: &mut dyn Flow,
    ) -> SpeculatedFloatPlacement {
        if !parent_flow.is_block_like() {
            return parent_flow.base().speculated_float_placement_in;
        }

        let parent_block_flow = parent_flow.as_block();
        if parent_block_flow.formatting_context_type() != FormattingContextType::None {
            return SpeculatedFloatPlacement::zero();
        }

        let mut placement = parent_block_flow.base.speculated_float_placement_in;
        let speculated_inline_content_edge_offsets = parent_block_flow
            .fragment
            .guess_inline_content_edge_offsets();

        if speculated_inline_content_edge_offsets.start > Au(0) {
            placement.left = if placement.left > speculated_inline_content_edge_offsets.start {
                placement.left - speculated_inline_content_edge_offsets.start
            } else {
                Au(0)
            }
        }
        if speculated_inline_content_edge_offsets.end > Au(0) {
            placement.right = if placement.right > speculated_inline_content_edge_offsets.end {
                placement.right - speculated_inline_content_edge_offsets.end
            } else {
                Au(0)
            }
        }

        placement
    }
}