1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/. */
use std::cmp::{max, min};
use std::fmt;
use app_units::{Au, MAX_AU};
use log::debug;
use serde::Serialize;
use style::computed_values::float::T as StyleFloat;
use style::logical_geometry::{LogicalRect, LogicalSize, WritingMode};
use crate::block::FormattingContextType;
use crate::flow::{Flow, FlowFlags, GetBaseFlow, ImmutableFlowUtils};
use crate::persistent_list::PersistentList;
/// The kind of float: left or right.
#[derive(Clone, Copy, Debug, Serialize)]
pub enum FloatKind {
Left,
Right,
}
impl FloatKind {
pub fn from_property(property: StyleFloat) -> Option<FloatKind> {
match property {
StyleFloat::None => None,
StyleFloat::Left => Some(FloatKind::Left),
StyleFloat::Right => Some(FloatKind::Right),
}
}
}
/// The kind of clearance: left, right, or both.
#[derive(Clone, Copy)]
pub enum ClearType {
Left,
Right,
Both,
}
/// Information about a single float.
#[derive(Clone, Copy)]
struct Float {
/// The boundaries of this float.
bounds: LogicalRect<Au>,
/// The kind of float: left or right.
kind: FloatKind,
}
impl fmt::Debug for Float {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "bounds={:?} kind={:?}", self.bounds, self.kind)
}
}
/// Information about the floats next to a flow.
#[derive(Clone)]
struct FloatList {
/// Information about each of the floats here.
floats: PersistentList<Float>,
/// Cached copy of the maximum block-start offset of the float.
max_block_start: Option<Au>,
}
impl FloatList {
fn new() -> FloatList {
FloatList {
floats: PersistentList::new(),
max_block_start: None,
}
}
/// Returns true if the list is allocated and false otherwise. If false, there are guaranteed
/// not to be any floats.
fn is_present(&self) -> bool {
self.floats.len() > 0
}
}
impl fmt::Debug for FloatList {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"max_block_start={:?} floats={}",
self.max_block_start,
self.floats.len()
)?;
for float in self.floats.iter() {
write!(f, " {:?}", float)?;
}
Ok(())
}
}
/// All the information necessary to place a float.
pub struct PlacementInfo {
/// The dimensions of the float.
pub size: LogicalSize<Au>,
/// The minimum block-start of the float, as determined by earlier elements.
pub ceiling: Au,
/// The maximum inline-end position of the float, generally determined by the containing block.
pub max_inline_size: Au,
/// The kind of float.
pub kind: FloatKind,
}
impl fmt::Debug for PlacementInfo {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"size={:?} ceiling={:?} max_inline_size={:?} kind={:?}",
self.size, self.ceiling, self.max_inline_size, self.kind
)
}
}
fn range_intersect(
block_start_1: Au,
block_end_1: Au,
block_start_2: Au,
block_end_2: Au,
) -> (Au, Au) {
(
max(block_start_1, block_start_2),
min(block_end_1, block_end_2),
)
}
/// Encapsulates information about floats. This is optimized to avoid allocation if there are
/// no floats, and to avoid copying when translating the list of floats downward.
#[derive(Clone)]
pub struct Floats {
/// The list of floats.
list: FloatList,
/// The offset of the flow relative to the first float.
offset: LogicalSize<Au>,
/// The writing mode of these floats.
pub writing_mode: WritingMode,
}
impl fmt::Debug for Floats {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if !self.list.is_present() {
write!(f, "[empty]")
} else {
write!(f, "offset={:?} floats={:?}", self.offset, self.list)
}
}
}
impl Floats {
/// Creates a new `Floats` object.
pub fn new(writing_mode: WritingMode) -> Floats {
Floats {
list: FloatList::new(),
offset: LogicalSize::zero(writing_mode),
writing_mode,
}
}
/// Adjusts the recorded offset of the flow relative to the first float.
pub fn translate(&mut self, delta: LogicalSize<Au>) {
self.offset = self.offset + delta
}
/// Returns the position of the last float in flow coordinates.
pub fn last_float_pos(&self) -> Option<LogicalRect<Au>> {
self.list
.floats
.front()
.map(|float| float.bounds.translate_by_size(self.offset))
}
/// Returns a rectangle that encloses the region from block-start to block-start + block-size,
/// with inline-size small enough that it doesn't collide with any floats. max_x is the
/// inline-size beyond which floats have no effect. (Generally this is the containing block
/// inline-size.)
pub fn available_rect(
&self,
block_start: Au,
block_size: Au,
max_x: Au,
) -> Option<LogicalRect<Au>> {
let list = &self.list;
let block_start = block_start - self.offset.block;
debug!("available_rect: trying to find space at {:?}", block_start);
// Relevant dimensions for the inline-end-most inline-start float
let mut max_inline_start = Au(0) - self.offset.inline;
let mut l_block_start = None;
let mut l_block_end = None;
// Relevant dimensions for the inline-start-most inline-end float
let mut min_inline_end = max_x - self.offset.inline;
let mut r_block_start = None;
let mut r_block_end = None;
// Find the float collisions for the given range in the block direction.
for float in list.floats.iter() {
debug!("available_rect: Checking for collision against float");
let float_pos = float.bounds.start;
let float_size = float.bounds.size;
debug!("float_pos: {:?}, float_size: {:?}", float_pos, float_size);
match float.kind {
FloatKind::Left
if float_pos.i + float_size.inline > max_inline_start &&
float_pos.b + float_size.block > block_start &&
float_pos.b < block_start + block_size =>
{
max_inline_start = float_pos.i + float_size.inline;
l_block_start = Some(float_pos.b);
l_block_end = Some(float_pos.b + float_size.block);
debug!(
"available_rect: collision with inline_start float: new \
max_inline_start is {:?}",
max_inline_start
);
},
FloatKind::Right
if float_pos.i < min_inline_end &&
float_pos.b + float_size.block > block_start &&
float_pos.b < block_start + block_size =>
{
min_inline_end = float_pos.i;
r_block_start = Some(float_pos.b);
r_block_end = Some(float_pos.b + float_size.block);
debug!(
"available_rect: collision with inline_end float: new min_inline_end \
is {:?}",
min_inline_end
);
},
FloatKind::Left | FloatKind::Right => {},
}
}
// Extend the vertical range of the rectangle to the closest floats.
// If there are floats on both sides, take the intersection of the
// two areas. Also make sure we never return a block-start smaller than the
// given upper bound.
let (block_start, block_end) =
match (r_block_start, r_block_end, l_block_start, l_block_end) {
(
Some(r_block_start),
Some(r_block_end),
Some(l_block_start),
Some(l_block_end),
) => range_intersect(
max(block_start, r_block_start),
r_block_end,
max(block_start, l_block_start),
l_block_end,
),
(None, None, Some(l_block_start), Some(l_block_end)) => {
(max(block_start, l_block_start), l_block_end)
},
(Some(r_block_start), Some(r_block_end), None, None) => {
(max(block_start, r_block_start), r_block_end)
},
(None, None, None, None) => return None,
_ => panic!("Reached unreachable state when computing float area"),
};
// FIXME(eatkinson): This assertion is too strong and fails in some cases. It is OK to
// return negative inline-sizes since we check against that inline-end away, but we should
// still understand why they occur and add a stronger assertion here.
// assert!(max_inline-start < min_inline-end);
assert!(block_start <= block_end, "Float position error");
Some(LogicalRect::new(
self.writing_mode,
max_inline_start + self.offset.inline,
block_start + self.offset.block,
min_inline_end - max_inline_start,
block_end - block_start,
))
}
/// Adds a new float to the list.
pub fn add_float(&mut self, info: &PlacementInfo) {
let new_info = PlacementInfo {
size: info.size,
ceiling: match self.list.max_block_start {
None => info.ceiling,
Some(max_block_start) => max(info.ceiling, max_block_start + self.offset.block),
},
max_inline_size: info.max_inline_size,
kind: info.kind,
};
debug!("add_float: added float with info {:?}", new_info);
let new_float = Float {
bounds: LogicalRect::from_point_size(
self.writing_mode,
self.place_between_floats(&new_info).start - self.offset,
info.size,
),
kind: info.kind,
};
self.list.floats = self.list.floats.prepend_elem(new_float);
self.list.max_block_start = match self.list.max_block_start {
None => Some(new_float.bounds.start.b),
Some(max_block_start) => Some(max(max_block_start, new_float.bounds.start.b)),
}
}
/// Given the three sides of the bounding rectangle in the block-start direction, finds the
/// largest block-size that will result in the rectangle not colliding with any floats. Returns
/// `None` if that block-size is infinite.
fn max_block_size_for_bounds(
&self,
inline_start: Au,
block_start: Au,
inline_size: Au,
) -> Option<Au> {
let list = &self.list;
let block_start = block_start - self.offset.block;
let inline_start = inline_start - self.offset.inline;
let mut max_block_size = None;
for float in list.floats.iter() {
if float.bounds.start.b + float.bounds.size.block > block_start &&
float.bounds.start.i + float.bounds.size.inline > inline_start &&
float.bounds.start.i < inline_start + inline_size
{
let new_y = float.bounds.start.b;
max_block_size = Some(min(max_block_size.unwrap_or(new_y), new_y));
}
}
max_block_size.map(|h| h + self.offset.block)
}
/// Given placement information, finds the closest place a fragment can be positioned without
/// colliding with any floats.
pub fn place_between_floats(&self, info: &PlacementInfo) -> LogicalRect<Au> {
debug!("place_between_floats: Placing object with {:?}", info.size);
// If no floats, use this fast path.
if !self.list.is_present() {
match info.kind {
FloatKind::Left => {
return LogicalRect::new(
self.writing_mode,
Au(0),
info.ceiling,
info.max_inline_size,
MAX_AU,
);
},
FloatKind::Right => {
return LogicalRect::new(
self.writing_mode,
info.max_inline_size - info.size.inline,
info.ceiling,
info.max_inline_size,
MAX_AU,
);
},
}
}
// Can't go any higher than previous floats or previous elements in the document.
let mut float_b = info.ceiling;
loop {
let maybe_location =
self.available_rect(float_b, info.size.block, info.max_inline_size);
debug!(
"place_float: got available rect: {:?} for block-pos: {:?}",
maybe_location, float_b
);
match maybe_location {
// If there are no floats blocking us, return the current location
// TODO(eatkinson): integrate with overflow
None => {
return match info.kind {
FloatKind::Left => LogicalRect::new(
self.writing_mode,
Au(0),
float_b,
info.max_inline_size,
MAX_AU,
),
FloatKind::Right => LogicalRect::new(
self.writing_mode,
info.max_inline_size - info.size.inline,
float_b,
info.max_inline_size,
MAX_AU,
),
};
},
Some(rect) => {
assert_ne!(
rect.start.b + rect.size.block,
float_b,
"Non-terminating float placement"
);
// Place here if there is enough room
if rect.size.inline >= info.size.inline {
let block_size = self.max_block_size_for_bounds(
rect.start.i,
rect.start.b,
rect.size.inline,
);
let block_size = block_size.unwrap_or(MAX_AU);
return match info.kind {
FloatKind::Left => LogicalRect::new(
self.writing_mode,
rect.start.i,
float_b,
rect.size.inline,
block_size,
),
FloatKind::Right => LogicalRect::new(
self.writing_mode,
rect.start.i + rect.size.inline - info.size.inline,
float_b,
rect.size.inline,
block_size,
),
};
}
// Try to place at the next-lowest location.
// Need to be careful of fencepost errors.
float_b = rect.start.b + rect.size.block;
},
}
}
}
pub fn clearance(&self, clear: ClearType) -> Au {
let list = &self.list;
let mut clearance = Au(0);
for float in list.floats.iter() {
match (clear, float.kind) {
(ClearType::Left, FloatKind::Left) |
(ClearType::Right, FloatKind::Right) |
(ClearType::Both, _) => {
let b = self.offset.block + float.bounds.start.b + float.bounds.size.block;
clearance = max(clearance, b);
},
_ => {},
}
}
clearance
}
pub fn is_present(&self) -> bool {
self.list.is_present()
}
}
/// The speculated inline sizes of floats flowing through or around a flow (depending on whether
/// the flow is a block formatting context). These speculations are always *upper bounds*; the
/// actual inline sizes might be less. Note that this implies that a speculated value of zero is a
/// guarantee that there will be no floats on that side.
///
/// This is used for two purposes: (a) determining whether we can lay out blocks in parallel; (b)
/// guessing the inline-sizes of block formatting contexts in an effort to lay them out in
/// parallel.
#[derive(Clone, Copy)]
pub struct SpeculatedFloatPlacement {
/// The estimated inline size (an upper bound) of the left floats flowing through this flow.
pub left: Au,
/// The estimated inline size (an upper bound) of the right floats flowing through this flow.
pub right: Au,
}
impl fmt::Debug for SpeculatedFloatPlacement {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "L {:?} R {:?}", self.left, self.right)
}
}
impl SpeculatedFloatPlacement {
/// Returns a `SpeculatedFloatPlacement` objects with both left and right speculated inline
/// sizes initialized to zero.
pub fn zero() -> SpeculatedFloatPlacement {
SpeculatedFloatPlacement {
left: Au(0),
right: Au(0),
}
}
/// Given the speculated inline size of the floats out for the inorder predecessor of this
/// flow, computes the speculated inline size of the floats flowing in.
pub fn compute_floats_in(&mut self, flow: &mut dyn Flow) {
let base_flow = flow.base();
if base_flow.flags.contains(FlowFlags::CLEARS_LEFT) {
self.left = Au(0)
}
if base_flow.flags.contains(FlowFlags::CLEARS_RIGHT) {
self.right = Au(0)
}
}
/// Given the speculated inline size of the floats out for this flow's last child, computes the
/// speculated inline size of the floats out for this flow.
pub fn compute_floats_out(&mut self, flow: &mut dyn Flow) {
if flow.is_block_like() {
let block_flow = flow.as_block();
if block_flow.formatting_context_type() != FormattingContextType::None {
*self = block_flow.base.speculated_float_placement_in;
} else {
if self.left > Au(0) || self.right > Au(0) {
let speculated_inline_content_edge_offsets =
block_flow.fragment.guess_inline_content_edge_offsets();
if self.left > Au(0) && speculated_inline_content_edge_offsets.start > Au(0) {
self.left += speculated_inline_content_edge_offsets.start
}
if self.right > Au(0) && speculated_inline_content_edge_offsets.end > Au(0) {
self.right += speculated_inline_content_edge_offsets.end
}
}
self.left = max(
self.left,
block_flow.base.speculated_float_placement_in.left,
);
self.right = max(
self.right,
block_flow.base.speculated_float_placement_in.right,
);
}
}
let base_flow = flow.base();
if !base_flow.flags.is_float() {
return;
}
let mut float_inline_size = base_flow.intrinsic_inline_sizes.preferred_inline_size;
if float_inline_size == Au(0) && flow.is_block_like() {
// Hack: If the size of the float is not fixed, then there's no
// way we can guess at its size now. So just pick an arbitrary
// nonzero value (in this case, 1px) so that the layout
// traversal logic will know that objects later in the document
// might flow around this float.
let inline_size = flow.as_block().fragment.style.content_inline_size();
let fixed =
inline_size.is_definitely_zero() || inline_size.maybe_to_used_value(None).is_some();
if !fixed {
float_inline_size = Au::from_px(1)
}
}
match base_flow.flags.float_kind() {
StyleFloat::None => {},
StyleFloat::Left => self.left += float_inline_size,
StyleFloat::Right => self.right += float_inline_size,
}
}
/// Given a flow, computes the speculated inline size of the floats in of its first child.
pub fn compute_floats_in_for_first_child(
parent_flow: &mut dyn Flow,
) -> SpeculatedFloatPlacement {
if !parent_flow.is_block_like() {
return parent_flow.base().speculated_float_placement_in;
}
let parent_block_flow = parent_flow.as_block();
if parent_block_flow.formatting_context_type() != FormattingContextType::None {
return SpeculatedFloatPlacement::zero();
}
let mut placement = parent_block_flow.base.speculated_float_placement_in;
let speculated_inline_content_edge_offsets = parent_block_flow
.fragment
.guess_inline_content_edge_offsets();
if speculated_inline_content_edge_offsets.start > Au(0) {
placement.left = if placement.left > speculated_inline_content_edge_offsets.start {
placement.left - speculated_inline_content_edge_offsets.start
} else {
Au(0)
}
}
if speculated_inline_content_edge_offsets.end > Au(0) {
placement.right = if placement.right > speculated_inline_content_edge_offsets.end {
placement.right - speculated_inline_content_edge_offsets.end
} else {
Au(0)
}
}
placement
}
}