1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
//! The different shapes that can be painted.

use std::{any::Any, sync::Arc};

use crate::{
    stroke::PathStroke,
    text::{FontId, Fonts, Galley},
    Color32, Mesh, Stroke, TextureId,
};
use emath::*;

pub use crate::{CubicBezierShape, QuadraticBezierShape};

/// A paint primitive such as a circle or a piece of text.
/// Coordinates are all screen space points (not physical pixels).
///
/// You should generally recreate your [`Shape`]s each frame,
/// but storing them should also be fine with one exception:
/// [`Shape::Text`] depends on the current `pixels_per_point` (dpi scale)
/// and so must be recreated every time `pixels_per_point` changes.
#[must_use = "Add a Shape to a Painter"]
#[derive(Clone, Debug, PartialEq)]
pub enum Shape {
    /// Paint nothing. This can be useful as a placeholder.
    Noop,

    /// Recursively nest more shapes - sometimes a convenience to be able to do.
    /// For performance reasons it is better to avoid it.
    Vec(Vec<Shape>),

    /// Circle with optional outline and fill.
    Circle(CircleShape),

    /// Ellipse with optional outline and fill.
    Ellipse(EllipseShape),

    /// A line between two points.
    LineSegment {
        points: [Pos2; 2],
        stroke: PathStroke,
    },

    /// A series of lines between points.
    /// The path can have a stroke and/or fill (if closed).
    Path(PathShape),

    /// Rectangle with optional outline and fill.
    Rect(RectShape),

    /// Text.
    ///
    /// This needs to be recreated if `pixels_per_point` (dpi scale) changes.
    Text(TextShape),

    /// A general triangle mesh.
    ///
    /// Can be used to display images.
    Mesh(Mesh),

    /// A quadratic [Bézier Curve](https://en.wikipedia.org/wiki/B%C3%A9zier_curve).
    QuadraticBezier(QuadraticBezierShape),

    /// A cubic [Bézier Curve](https://en.wikipedia.org/wiki/B%C3%A9zier_curve).
    CubicBezier(CubicBezierShape),

    /// Backend-specific painting.
    Callback(PaintCallback),
}

#[test]
fn shape_impl_send_sync() {
    fn assert_send_sync<T: Send + Sync>() {}
    assert_send_sync::<Shape>();
}

impl From<Vec<Self>> for Shape {
    #[inline(always)]
    fn from(shapes: Vec<Self>) -> Self {
        Self::Vec(shapes)
    }
}

impl From<Mesh> for Shape {
    #[inline(always)]
    fn from(mesh: Mesh) -> Self {
        Self::Mesh(mesh)
    }
}

/// ## Constructors
impl Shape {
    /// A line between two points.
    /// More efficient than calling [`Self::line`].
    #[inline]
    pub fn line_segment(points: [Pos2; 2], stroke: impl Into<PathStroke>) -> Self {
        Self::LineSegment {
            points,
            stroke: stroke.into(),
        }
    }

    /// A horizontal line.
    pub fn hline(x: impl Into<Rangef>, y: f32, stroke: impl Into<PathStroke>) -> Self {
        let x = x.into();
        Self::LineSegment {
            points: [pos2(x.min, y), pos2(x.max, y)],
            stroke: stroke.into(),
        }
    }

    /// A vertical line.
    pub fn vline(x: f32, y: impl Into<Rangef>, stroke: impl Into<PathStroke>) -> Self {
        let y = y.into();
        Self::LineSegment {
            points: [pos2(x, y.min), pos2(x, y.max)],
            stroke: stroke.into(),
        }
    }

    /// A line through many points.
    ///
    /// Use [`Self::line_segment`] instead if your line only connects two points.
    #[inline]
    pub fn line(points: Vec<Pos2>, stroke: impl Into<PathStroke>) -> Self {
        Self::Path(PathShape::line(points, stroke))
    }

    /// A line that closes back to the start point again.
    #[inline]
    pub fn closed_line(points: Vec<Pos2>, stroke: impl Into<PathStroke>) -> Self {
        Self::Path(PathShape::closed_line(points, stroke))
    }

    /// Turn a line into equally spaced dots.
    pub fn dotted_line(
        path: &[Pos2],
        color: impl Into<Color32>,
        spacing: f32,
        radius: f32,
    ) -> Vec<Self> {
        let mut shapes = Vec::new();
        points_from_line(path, spacing, radius, color.into(), &mut shapes);
        shapes
    }

    /// Turn a line into dashes.
    pub fn dashed_line(
        path: &[Pos2],
        stroke: impl Into<Stroke>,
        dash_length: f32,
        gap_length: f32,
    ) -> Vec<Self> {
        let mut shapes = Vec::new();
        dashes_from_line(
            path,
            stroke.into(),
            &[dash_length],
            &[gap_length],
            &mut shapes,
            0.,
        );
        shapes
    }

    /// Turn a line into dashes with different dash/gap lengths and a start offset.
    pub fn dashed_line_with_offset(
        path: &[Pos2],
        stroke: impl Into<Stroke>,
        dash_lengths: &[f32],
        gap_lengths: &[f32],
        dash_offset: f32,
    ) -> Vec<Self> {
        let mut shapes = Vec::new();
        dashes_from_line(
            path,
            stroke.into(),
            dash_lengths,
            gap_lengths,
            &mut shapes,
            dash_offset,
        );
        shapes
    }

    /// Turn a line into dashes. If you need to create many dashed lines use this instead of
    /// [`Self::dashed_line`].
    pub fn dashed_line_many(
        points: &[Pos2],
        stroke: impl Into<Stroke>,
        dash_length: f32,
        gap_length: f32,
        shapes: &mut Vec<Self>,
    ) {
        dashes_from_line(
            points,
            stroke.into(),
            &[dash_length],
            &[gap_length],
            shapes,
            0.,
        );
    }

    /// Turn a line into dashes with different dash/gap lengths and a start offset. If you need to
    /// create many dashed lines use this instead of [`Self::dashed_line_with_offset`].
    pub fn dashed_line_many_with_offset(
        points: &[Pos2],
        stroke: impl Into<Stroke>,
        dash_lengths: &[f32],
        gap_lengths: &[f32],
        dash_offset: f32,
        shapes: &mut Vec<Self>,
    ) {
        dashes_from_line(
            points,
            stroke.into(),
            dash_lengths,
            gap_lengths,
            shapes,
            dash_offset,
        );
    }

    /// A convex polygon with a fill and optional stroke.
    ///
    /// The most performant winding order is clockwise.
    #[inline]
    pub fn convex_polygon(
        points: Vec<Pos2>,
        fill: impl Into<Color32>,
        stroke: impl Into<PathStroke>,
    ) -> Self {
        Self::Path(PathShape::convex_polygon(points, fill, stroke))
    }

    #[inline]
    pub fn circle_filled(center: Pos2, radius: f32, fill_color: impl Into<Color32>) -> Self {
        Self::Circle(CircleShape::filled(center, radius, fill_color))
    }

    #[inline]
    pub fn circle_stroke(center: Pos2, radius: f32, stroke: impl Into<Stroke>) -> Self {
        Self::Circle(CircleShape::stroke(center, radius, stroke))
    }

    #[inline]
    pub fn ellipse_filled(center: Pos2, radius: Vec2, fill_color: impl Into<Color32>) -> Self {
        Self::Ellipse(EllipseShape::filled(center, radius, fill_color))
    }

    #[inline]
    pub fn ellipse_stroke(center: Pos2, radius: Vec2, stroke: impl Into<Stroke>) -> Self {
        Self::Ellipse(EllipseShape::stroke(center, radius, stroke))
    }

    #[inline]
    pub fn rect_filled(
        rect: Rect,
        rounding: impl Into<Rounding>,
        fill_color: impl Into<Color32>,
    ) -> Self {
        Self::Rect(RectShape::filled(rect, rounding, fill_color))
    }

    #[inline]
    pub fn rect_stroke(
        rect: Rect,
        rounding: impl Into<Rounding>,
        stroke: impl Into<Stroke>,
    ) -> Self {
        Self::Rect(RectShape::stroke(rect, rounding, stroke))
    }

    #[allow(clippy::needless_pass_by_value)]
    pub fn text(
        fonts: &Fonts,
        pos: Pos2,
        anchor: Align2,
        text: impl ToString,
        font_id: FontId,
        color: Color32,
    ) -> Self {
        let galley = fonts.layout_no_wrap(text.to_string(), font_id, color);
        let rect = anchor.anchor_size(pos, galley.size());
        Self::galley(rect.min, galley, color)
    }

    /// Any uncolored parts of the [`Galley`] (using [`Color32::PLACEHOLDER`]) will be replaced with the given color.
    ///
    /// Any non-placeholder color in the galley takes precedence over this fallback color.
    #[inline]
    pub fn galley(pos: Pos2, galley: Arc<Galley>, fallback_color: Color32) -> Self {
        TextShape::new(pos, galley, fallback_color).into()
    }

    /// All text color in the [`Galley`] will be replaced with the given color.
    #[inline]
    pub fn galley_with_override_text_color(
        pos: Pos2,
        galley: Arc<Galley>,
        text_color: Color32,
    ) -> Self {
        TextShape::new(pos, galley, text_color)
            .with_override_text_color(text_color)
            .into()
    }

    #[inline]
    #[deprecated = "Use `Shape::galley` or `Shape::galley_with_override_text_color` instead"]
    pub fn galley_with_color(pos: Pos2, galley: Arc<Galley>, text_color: Color32) -> Self {
        Self::galley_with_override_text_color(pos, galley, text_color)
    }

    #[inline]
    pub fn mesh(mesh: Mesh) -> Self {
        debug_assert!(mesh.is_valid());
        Self::Mesh(mesh)
    }

    /// An image at the given position.
    ///
    /// `uv` should normally be `Rect::from_min_max(pos2(0.0, 0.0), pos2(1.0, 1.0))`
    /// unless you want to crop or flip the image.
    ///
    /// `tint` is a color multiplier. Use [`Color32::WHITE`] if you don't want to tint the image.
    pub fn image(texture_id: TextureId, rect: Rect, uv: Rect, tint: Color32) -> Self {
        let mut mesh = Mesh::with_texture(texture_id);
        mesh.add_rect_with_uv(rect, uv, tint);
        Self::mesh(mesh)
    }

    /// The visual bounding rectangle (includes stroke widths)
    pub fn visual_bounding_rect(&self) -> Rect {
        match self {
            Self::Noop => Rect::NOTHING,
            Self::Vec(shapes) => {
                let mut rect = Rect::NOTHING;
                for shape in shapes {
                    rect = rect.union(shape.visual_bounding_rect());
                }
                rect
            }
            Self::Circle(circle_shape) => circle_shape.visual_bounding_rect(),
            Self::Ellipse(ellipse_shape) => ellipse_shape.visual_bounding_rect(),
            Self::LineSegment { points, stroke } => {
                if stroke.is_empty() {
                    Rect::NOTHING
                } else {
                    Rect::from_two_pos(points[0], points[1]).expand(stroke.width / 2.0)
                }
            }
            Self::Path(path_shape) => path_shape.visual_bounding_rect(),
            Self::Rect(rect_shape) => rect_shape.visual_bounding_rect(),
            Self::Text(text_shape) => text_shape.visual_bounding_rect(),
            Self::Mesh(mesh) => mesh.calc_bounds(),
            Self::QuadraticBezier(bezier) => bezier.visual_bounding_rect(),
            Self::CubicBezier(bezier) => bezier.visual_bounding_rect(),
            Self::Callback(custom) => custom.rect,
        }
    }
}

/// ## Inspection and transforms
impl Shape {
    #[inline(always)]
    pub fn texture_id(&self) -> super::TextureId {
        if let Self::Mesh(mesh) = self {
            mesh.texture_id
        } else if let Self::Rect(rect_shape) = self {
            rect_shape.fill_texture_id
        } else {
            super::TextureId::default()
        }
    }

    /// Scale the shape by `factor`, in-place.
    ///
    /// A wrapper around [`Self::transform`].
    #[inline(always)]
    pub fn scale(&mut self, factor: f32) {
        self.transform(TSTransform::from_scaling(factor));
    }

    /// Move the shape by `delta`, in-place.
    ///
    /// A wrapper around [`Self::transform`].
    #[inline(always)]
    pub fn translate(&mut self, delta: Vec2) {
        self.transform(TSTransform::from_translation(delta));
    }

    /// Move the shape by this many points, in-place.
    ///
    /// If using a [`PaintCallback`], note that only the rect is scaled as opposed
    /// to other shapes where the stroke is also scaled.
    pub fn transform(&mut self, transform: TSTransform) {
        match self {
            Self::Noop => {}
            Self::Vec(shapes) => {
                for shape in shapes {
                    shape.transform(transform);
                }
            }
            Self::Circle(circle_shape) => {
                circle_shape.center = transform * circle_shape.center;
                circle_shape.radius *= transform.scaling;
                circle_shape.stroke.width *= transform.scaling;
            }
            Self::Ellipse(ellipse_shape) => {
                ellipse_shape.center = transform * ellipse_shape.center;
                ellipse_shape.radius *= transform.scaling;
                ellipse_shape.stroke.width *= transform.scaling;
            }
            Self::LineSegment { points, stroke } => {
                for p in points {
                    *p = transform * *p;
                }
                stroke.width *= transform.scaling;
            }
            Self::Path(path_shape) => {
                for p in &mut path_shape.points {
                    *p = transform * *p;
                }
                path_shape.stroke.width *= transform.scaling;
            }
            Self::Rect(rect_shape) => {
                rect_shape.rect = transform * rect_shape.rect;
                rect_shape.stroke.width *= transform.scaling;
                rect_shape.rounding *= transform.scaling;
            }
            Self::Text(text_shape) => {
                text_shape.pos = transform * text_shape.pos;

                // Scale text:
                let galley = Arc::make_mut(&mut text_shape.galley);
                for row in &mut galley.rows {
                    row.visuals.mesh_bounds = transform.scaling * row.visuals.mesh_bounds;
                    for v in &mut row.visuals.mesh.vertices {
                        v.pos = Pos2::new(transform.scaling * v.pos.x, transform.scaling * v.pos.y);
                    }
                }

                galley.mesh_bounds = transform.scaling * galley.mesh_bounds;
                galley.rect = transform.scaling * galley.rect;
            }
            Self::Mesh(mesh) => {
                mesh.transform(transform);
            }
            Self::QuadraticBezier(bezier_shape) => {
                bezier_shape.points[0] = transform * bezier_shape.points[0];
                bezier_shape.points[1] = transform * bezier_shape.points[1];
                bezier_shape.points[2] = transform * bezier_shape.points[2];
                bezier_shape.stroke.width *= transform.scaling;
            }
            Self::CubicBezier(cubic_curve) => {
                for p in &mut cubic_curve.points {
                    *p = transform * *p;
                }
                cubic_curve.stroke.width *= transform.scaling;
            }
            Self::Callback(shape) => {
                shape.rect = transform * shape.rect;
            }
        }
    }
}

// ----------------------------------------------------------------------------

/// How to paint a circle.
#[derive(Copy, Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub struct CircleShape {
    pub center: Pos2,
    pub radius: f32,
    pub fill: Color32,
    pub stroke: Stroke,
}

impl CircleShape {
    #[inline]
    pub fn filled(center: Pos2, radius: f32, fill_color: impl Into<Color32>) -> Self {
        Self {
            center,
            radius,
            fill: fill_color.into(),
            stroke: Default::default(),
        }
    }

    #[inline]
    pub fn stroke(center: Pos2, radius: f32, stroke: impl Into<Stroke>) -> Self {
        Self {
            center,
            radius,
            fill: Default::default(),
            stroke: stroke.into(),
        }
    }

    /// The visual bounding rectangle (includes stroke width)
    pub fn visual_bounding_rect(&self) -> Rect {
        if self.fill == Color32::TRANSPARENT && self.stroke.is_empty() {
            Rect::NOTHING
        } else {
            Rect::from_center_size(
                self.center,
                Vec2::splat(self.radius * 2.0 + self.stroke.width),
            )
        }
    }
}

impl From<CircleShape> for Shape {
    #[inline(always)]
    fn from(shape: CircleShape) -> Self {
        Self::Circle(shape)
    }
}

// ----------------------------------------------------------------------------

/// How to paint an ellipse.
#[derive(Copy, Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub struct EllipseShape {
    pub center: Pos2,

    /// Radius is the vector (a, b) where the width of the Ellipse is 2a and the height is 2b
    pub radius: Vec2,
    pub fill: Color32,
    pub stroke: Stroke,
}

impl EllipseShape {
    #[inline]
    pub fn filled(center: Pos2, radius: Vec2, fill_color: impl Into<Color32>) -> Self {
        Self {
            center,
            radius,
            fill: fill_color.into(),
            stroke: Default::default(),
        }
    }

    #[inline]
    pub fn stroke(center: Pos2, radius: Vec2, stroke: impl Into<Stroke>) -> Self {
        Self {
            center,
            radius,
            fill: Default::default(),
            stroke: stroke.into(),
        }
    }

    /// The visual bounding rectangle (includes stroke width)
    pub fn visual_bounding_rect(&self) -> Rect {
        if self.fill == Color32::TRANSPARENT && self.stroke.is_empty() {
            Rect::NOTHING
        } else {
            Rect::from_center_size(
                self.center,
                self.radius * 2.0 + Vec2::splat(self.stroke.width),
            )
        }
    }
}

impl From<EllipseShape> for Shape {
    #[inline(always)]
    fn from(shape: EllipseShape) -> Self {
        Self::Ellipse(shape)
    }
}

// ----------------------------------------------------------------------------

/// A path which can be stroked and/or filled (if closed).
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub struct PathShape {
    /// Filled paths should prefer clockwise order.
    pub points: Vec<Pos2>,

    /// If true, connect the first and last of the points together.
    /// This is required if `fill != TRANSPARENT`.
    pub closed: bool,

    /// Fill is only supported for convex polygons.
    pub fill: Color32,

    /// Color and thickness of the line.
    pub stroke: PathStroke,
    // TODO(emilk): Add texture support either by supplying uv for each point,
    // or by some transform from points to uv (e.g. a callback or a linear transform matrix).
}

impl PathShape {
    /// A line through many points.
    ///
    /// Use [`Shape::line_segment`] instead if your line only connects two points.
    #[inline]
    pub fn line(points: Vec<Pos2>, stroke: impl Into<PathStroke>) -> Self {
        Self {
            points,
            closed: false,
            fill: Default::default(),
            stroke: stroke.into(),
        }
    }

    /// A line that closes back to the start point again.
    #[inline]
    pub fn closed_line(points: Vec<Pos2>, stroke: impl Into<PathStroke>) -> Self {
        Self {
            points,
            closed: true,
            fill: Default::default(),
            stroke: stroke.into(),
        }
    }

    /// A convex polygon with a fill and optional stroke.
    ///
    /// The most performant winding order is clockwise.
    #[inline]
    pub fn convex_polygon(
        points: Vec<Pos2>,
        fill: impl Into<Color32>,
        stroke: impl Into<PathStroke>,
    ) -> Self {
        Self {
            points,
            closed: true,
            fill: fill.into(),
            stroke: stroke.into(),
        }
    }

    /// The visual bounding rectangle (includes stroke width)
    #[inline]
    pub fn visual_bounding_rect(&self) -> Rect {
        if self.fill == Color32::TRANSPARENT && self.stroke.is_empty() {
            Rect::NOTHING
        } else {
            Rect::from_points(&self.points).expand(self.stroke.width / 2.0)
        }
    }
}

impl From<PathShape> for Shape {
    #[inline(always)]
    fn from(shape: PathShape) -> Self {
        Self::Path(shape)
    }
}

// ----------------------------------------------------------------------------

/// How to paint a rectangle.
#[derive(Copy, Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub struct RectShape {
    pub rect: Rect,

    /// How rounded the corners are. Use `Rounding::ZERO` for no rounding.
    pub rounding: Rounding,

    /// How to fill the rectangle.
    pub fill: Color32,

    /// The thickness and color of the outline.
    pub stroke: Stroke,

    /// If larger than zero, the edges of the rectangle
    /// (for both fill and stroke) will be blurred.
    ///
    /// This can be used to produce shadows and glow effects.
    ///
    /// The blur is currently implemented using a simple linear blur in sRGBA gamma space.
    pub blur_width: f32,

    /// If the rect should be filled with a texture, which one?
    ///
    /// The texture is multiplied with [`Self::fill`].
    pub fill_texture_id: TextureId,

    /// What UV coordinates to use for the texture?
    ///
    /// To display a texture, set [`Self::fill_texture_id`],
    /// and set this to `Rect::from_min_max(pos2(0.0, 0.0), pos2(1.0, 1.0))`.
    ///
    /// Use [`Rect::ZERO`] to turn off texturing.
    pub uv: Rect,
}

impl RectShape {
    #[inline]
    pub fn new(
        rect: Rect,
        rounding: impl Into<Rounding>,
        fill_color: impl Into<Color32>,
        stroke: impl Into<Stroke>,
    ) -> Self {
        Self {
            rect,
            rounding: rounding.into(),
            fill: fill_color.into(),
            stroke: stroke.into(),
            blur_width: 0.0,
            fill_texture_id: Default::default(),
            uv: Rect::ZERO,
        }
    }

    #[inline]
    pub fn filled(
        rect: Rect,
        rounding: impl Into<Rounding>,
        fill_color: impl Into<Color32>,
    ) -> Self {
        Self {
            rect,
            rounding: rounding.into(),
            fill: fill_color.into(),
            stroke: Default::default(),
            blur_width: 0.0,
            fill_texture_id: Default::default(),
            uv: Rect::ZERO,
        }
    }

    #[inline]
    pub fn stroke(rect: Rect, rounding: impl Into<Rounding>, stroke: impl Into<Stroke>) -> Self {
        Self {
            rect,
            rounding: rounding.into(),
            fill: Default::default(),
            stroke: stroke.into(),
            blur_width: 0.0,
            fill_texture_id: Default::default(),
            uv: Rect::ZERO,
        }
    }

    /// If larger than zero, the edges of the rectangle
    /// (for both fill and stroke) will be blurred.
    ///
    /// This can be used to produce shadows and glow effects.
    ///
    /// The blur is currently implemented using a simple linear blur in `sRGBA` gamma space.
    #[inline]
    pub fn with_blur_width(mut self, blur_width: f32) -> Self {
        self.blur_width = blur_width;
        self
    }

    /// The visual bounding rectangle (includes stroke width)
    #[inline]
    pub fn visual_bounding_rect(&self) -> Rect {
        if self.fill == Color32::TRANSPARENT && self.stroke.is_empty() {
            Rect::NOTHING
        } else {
            self.rect
                .expand((self.stroke.width + self.blur_width) / 2.0)
        }
    }
}

impl From<RectShape> for Shape {
    #[inline(always)]
    fn from(shape: RectShape) -> Self {
        Self::Rect(shape)
    }
}

#[derive(Copy, Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
/// How rounded the corners of things should be
pub struct Rounding {
    /// Radius of the rounding of the North-West (left top) corner.
    pub nw: f32,

    /// Radius of the rounding of the North-East (right top) corner.
    pub ne: f32,

    /// Radius of the rounding of the South-West (left bottom) corner.
    pub sw: f32,

    /// Radius of the rounding of the South-East (right bottom) corner.
    pub se: f32,
}

impl Default for Rounding {
    #[inline]
    fn default() -> Self {
        Self::ZERO
    }
}

impl From<f32> for Rounding {
    #[inline]
    fn from(radius: f32) -> Self {
        Self {
            nw: radius,
            ne: radius,
            sw: radius,
            se: radius,
        }
    }
}

impl Rounding {
    /// No rounding on any corner.
    pub const ZERO: Self = Self {
        nw: 0.0,
        ne: 0.0,
        sw: 0.0,
        se: 0.0,
    };

    #[inline]
    pub const fn same(radius: f32) -> Self {
        Self {
            nw: radius,
            ne: radius,
            sw: radius,
            se: radius,
        }
    }

    /// Do all corners have the same rounding?
    #[inline]
    pub fn is_same(&self) -> bool {
        self.nw == self.ne && self.nw == self.sw && self.nw == self.se
    }

    /// Make sure each corner has a rounding of at least this.
    #[inline]
    pub fn at_least(&self, min: f32) -> Self {
        Self {
            nw: self.nw.max(min),
            ne: self.ne.max(min),
            sw: self.sw.max(min),
            se: self.se.max(min),
        }
    }

    /// Make sure each corner has a rounding of at most this.
    #[inline]
    pub fn at_most(&self, max: f32) -> Self {
        Self {
            nw: self.nw.min(max),
            ne: self.ne.min(max),
            sw: self.sw.min(max),
            se: self.se.min(max),
        }
    }
}

impl std::ops::Add for Rounding {
    type Output = Self;
    #[inline]
    fn add(self, rhs: Self) -> Self {
        Self {
            nw: self.nw + rhs.nw,
            ne: self.ne + rhs.ne,
            sw: self.sw + rhs.sw,
            se: self.se + rhs.se,
        }
    }
}

impl std::ops::AddAssign for Rounding {
    #[inline]
    fn add_assign(&mut self, rhs: Self) {
        *self = Self {
            nw: self.nw + rhs.nw,
            ne: self.ne + rhs.ne,
            sw: self.sw + rhs.sw,
            se: self.se + rhs.se,
        };
    }
}

impl std::ops::AddAssign<f32> for Rounding {
    #[inline]
    fn add_assign(&mut self, rhs: f32) {
        *self = Self {
            nw: self.nw + rhs,
            ne: self.ne + rhs,
            sw: self.sw + rhs,
            se: self.se + rhs,
        };
    }
}

impl std::ops::Sub for Rounding {
    type Output = Self;
    #[inline]
    fn sub(self, rhs: Self) -> Self {
        Self {
            nw: self.nw - rhs.nw,
            ne: self.ne - rhs.ne,
            sw: self.sw - rhs.sw,
            se: self.se - rhs.se,
        }
    }
}

impl std::ops::SubAssign for Rounding {
    #[inline]
    fn sub_assign(&mut self, rhs: Self) {
        *self = Self {
            nw: self.nw - rhs.nw,
            ne: self.ne - rhs.ne,
            sw: self.sw - rhs.sw,
            se: self.se - rhs.se,
        };
    }
}

impl std::ops::SubAssign<f32> for Rounding {
    #[inline]
    fn sub_assign(&mut self, rhs: f32) {
        *self = Self {
            nw: self.nw - rhs,
            ne: self.ne - rhs,
            sw: self.sw - rhs,
            se: self.se - rhs,
        };
    }
}

impl std::ops::Div<f32> for Rounding {
    type Output = Self;
    #[inline]
    fn div(self, rhs: f32) -> Self {
        Self {
            nw: self.nw / rhs,
            ne: self.ne / rhs,
            sw: self.sw / rhs,
            se: self.se / rhs,
        }
    }
}

impl std::ops::DivAssign<f32> for Rounding {
    #[inline]
    fn div_assign(&mut self, rhs: f32) {
        *self = Self {
            nw: self.nw / rhs,
            ne: self.ne / rhs,
            sw: self.sw / rhs,
            se: self.se / rhs,
        };
    }
}

impl std::ops::Mul<f32> for Rounding {
    type Output = Self;
    #[inline]
    fn mul(self, rhs: f32) -> Self {
        Self {
            nw: self.nw * rhs,
            ne: self.ne * rhs,
            sw: self.sw * rhs,
            se: self.se * rhs,
        }
    }
}

impl std::ops::MulAssign<f32> for Rounding {
    #[inline]
    fn mul_assign(&mut self, rhs: f32) {
        *self = Self {
            nw: self.nw * rhs,
            ne: self.ne * rhs,
            sw: self.sw * rhs,
            se: self.se * rhs,
        };
    }
}

// ----------------------------------------------------------------------------

/// How to paint some text on screen.
///
/// This needs to be recreated if `pixels_per_point` (dpi scale) changes.
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub struct TextShape {
    /// Top left corner of the first character.
    pub pos: Pos2,

    /// The laid out text, from [`Fonts::layout_job`].
    pub galley: Arc<Galley>,

    /// Add this underline to the whole text.
    /// You can also set an underline when creating the galley.
    pub underline: Stroke,

    /// Any [`Color32::PLACEHOLDER`] in the galley will be replaced by the given color.
    /// Affects everything: backgrounds, glyphs, strikethough, underline, etc.
    pub fallback_color: Color32,

    /// If set, the text color in the galley will be ignored and replaced
    /// with the given color.
    ///
    /// This only affects the glyphs and will NOT replace background color nor strikethrough/underline color.
    pub override_text_color: Option<Color32>,

    /// If set, the text will be rendered with the given opacity in gamma space
    /// Affects everything: backgrounds, glyphs, strikethough, underline, etc.
    pub opacity_factor: f32,

    /// Rotate text by this many radians clockwise.
    /// The pivot is `pos` (the upper left corner of the text).
    pub angle: f32,
}

impl TextShape {
    /// The given fallback color will be used for any uncolored part of the galley (using [`Color32::PLACEHOLDER`]).
    ///
    /// Any non-placeholder color in the galley takes precedence over this fallback color.
    #[inline]
    pub fn new(pos: Pos2, galley: Arc<Galley>, fallback_color: Color32) -> Self {
        Self {
            pos,
            galley,
            underline: Stroke::NONE,
            fallback_color,
            override_text_color: None,
            opacity_factor: 1.0,
            angle: 0.0,
        }
    }

    /// The visual bounding rectangle
    #[inline]
    pub fn visual_bounding_rect(&self) -> Rect {
        self.galley.mesh_bounds.translate(self.pos.to_vec2())
    }

    #[inline]
    pub fn with_underline(mut self, underline: Stroke) -> Self {
        self.underline = underline;
        self
    }

    /// Use the given color for the text, regardless of what color is already in the galley.
    #[inline]
    pub fn with_override_text_color(mut self, override_text_color: Color32) -> Self {
        self.override_text_color = Some(override_text_color);
        self
    }

    /// Rotate text by this many radians clockwise.
    /// The pivot is `pos` (the upper left corner of the text).
    #[inline]
    pub fn with_angle(mut self, angle: f32) -> Self {
        self.angle = angle;
        self
    }

    /// Render text with this opacity in gamma space
    #[inline]
    pub fn with_opacity_factor(mut self, opacity_factor: f32) -> Self {
        self.opacity_factor = opacity_factor;
        self
    }
}

impl From<TextShape> for Shape {
    #[inline(always)]
    fn from(shape: TextShape) -> Self {
        Self::Text(shape)
    }
}

// ----------------------------------------------------------------------------

/// Creates equally spaced filled circles from a line.
fn points_from_line(
    path: &[Pos2],
    spacing: f32,
    radius: f32,
    color: Color32,
    shapes: &mut Vec<Shape>,
) {
    let mut position_on_segment = 0.0;
    path.windows(2).for_each(|window| {
        let (start, end) = (window[0], window[1]);
        let vector = end - start;
        let segment_length = vector.length();
        while position_on_segment < segment_length {
            let new_point = start + vector * (position_on_segment / segment_length);
            shapes.push(Shape::circle_filled(new_point, radius, color));
            position_on_segment += spacing;
        }
        position_on_segment -= segment_length;
    });
}

/// Creates dashes from a line.
fn dashes_from_line(
    path: &[Pos2],
    stroke: Stroke,
    dash_lengths: &[f32],
    gap_lengths: &[f32],
    shapes: &mut Vec<Shape>,
    dash_offset: f32,
) {
    assert_eq!(dash_lengths.len(), gap_lengths.len());
    let mut position_on_segment = dash_offset;
    let mut drawing_dash = false;
    let mut step = 0;
    let steps = dash_lengths.len();
    path.windows(2).for_each(|window| {
        let (start, end) = (window[0], window[1]);
        let vector = end - start;
        let segment_length = vector.length();

        let mut start_point = start;
        while position_on_segment < segment_length {
            let new_point = start + vector * (position_on_segment / segment_length);
            if drawing_dash {
                // This is the end point.
                shapes.push(Shape::line_segment([start_point, new_point], stroke));
                position_on_segment += gap_lengths[step];
                // Increment step counter
                step += 1;
                if step >= steps {
                    step = 0;
                }
            } else {
                // Start a new dash.
                start_point = new_point;
                position_on_segment += dash_lengths[step];
            }
            drawing_dash = !drawing_dash;
        }

        // If the segment ends and the dash is not finished, add the segment's end point.
        if drawing_dash {
            shapes.push(Shape::line_segment([start_point, end], stroke));
        }

        position_on_segment -= segment_length;
    });
}

// ----------------------------------------------------------------------------

/// Information passed along with [`PaintCallback`] ([`Shape::Callback`]).
pub struct PaintCallbackInfo {
    /// Viewport in points.
    ///
    /// This specifies where on the screen to paint, and the borders of this
    /// Rect is the [-1, +1] of the Normalized Device Coordinates.
    ///
    /// Note than only a portion of this may be visible due to [`Self::clip_rect`].
    ///
    /// This comes from [`PaintCallback::rect`].
    pub viewport: Rect,

    /// Clip rectangle in points.
    pub clip_rect: Rect,

    /// Pixels per point.
    pub pixels_per_point: f32,

    /// Full size of the screen, in pixels.
    pub screen_size_px: [u32; 2],
}

/// Size of the viewport in whole, physical pixels.
pub struct ViewportInPixels {
    /// Physical pixel offset for left side of the viewport.
    pub left_px: i32,

    /// Physical pixel offset for top side of the viewport.
    pub top_px: i32,

    /// Physical pixel offset for bottom side of the viewport.
    ///
    /// This is what `glViewport`, `glScissor` etc expects for the y axis.
    pub from_bottom_px: i32,

    /// Viewport width in physical pixels.
    pub width_px: i32,

    /// Viewport height in physical pixels.
    pub height_px: i32,
}

impl ViewportInPixels {
    fn from_points(rect: &Rect, pixels_per_point: f32, screen_size_px: [u32; 2]) -> Self {
        // Fractional pixel values for viewports are generally valid, but may cause sampling issues
        // and rounding errors might cause us to get out of bounds.

        // Round:
        let left_px = (pixels_per_point * rect.min.x).round() as i32; // inclusive
        let top_px = (pixels_per_point * rect.min.y).round() as i32; // inclusive
        let right_px = (pixels_per_point * rect.max.x).round() as i32; // exclusive
        let bottom_px = (pixels_per_point * rect.max.y).round() as i32; // exclusive

        // Clamp to screen:
        let screen_width = screen_size_px[0] as i32;
        let screen_height = screen_size_px[1] as i32;
        let left_px = left_px.clamp(0, screen_width);
        let right_px = right_px.clamp(left_px, screen_width);
        let top_px = top_px.clamp(0, screen_height);
        let bottom_px = bottom_px.clamp(top_px, screen_height);

        let width_px = right_px - left_px;
        let height_px = bottom_px - top_px;

        Self {
            left_px,
            top_px,
            from_bottom_px: screen_height - height_px - top_px,
            width_px,
            height_px,
        }
    }
}

#[test]
fn test_viewport_rounding() {
    for i in 0..=10_000 {
        // Two adjacent viewports should never overlap:
        let x = i as f32 / 97.0;
        let left = Rect::from_min_max(pos2(0.0, 0.0), pos2(100.0, 100.0)).with_max_x(x);
        let right = Rect::from_min_max(pos2(0.0, 0.0), pos2(100.0, 100.0)).with_min_x(x);

        for pixels_per_point in [0.618, 1.0, std::f32::consts::PI] {
            let left = ViewportInPixels::from_points(&left, pixels_per_point, [100, 100]);
            let right = ViewportInPixels::from_points(&right, pixels_per_point, [100, 100]);
            assert_eq!(left.left_px + left.width_px, right.left_px);
        }
    }
}

impl PaintCallbackInfo {
    /// The viewport rectangle. This is what you would use in e.g. `glViewport`.
    pub fn viewport_in_pixels(&self) -> ViewportInPixels {
        ViewportInPixels::from_points(&self.viewport, self.pixels_per_point, self.screen_size_px)
    }

    /// The "scissor" or "clip" rectangle. This is what you would use in e.g. `glScissor`.
    pub fn clip_rect_in_pixels(&self) -> ViewportInPixels {
        ViewportInPixels::from_points(&self.clip_rect, self.pixels_per_point, self.screen_size_px)
    }
}

/// If you want to paint some 3D shapes inside an egui region, you can use this.
///
/// This is advanced usage, and is backend specific.
#[derive(Clone)]
pub struct PaintCallback {
    /// Where to paint.
    ///
    /// This will become [`PaintCallbackInfo::viewport`].
    pub rect: Rect,

    /// Paint something custom (e.g. 3D stuff).
    ///
    /// The concrete value of `callback` depends on the rendering backend used. For instance, the
    /// `glow` backend requires that callback be an `egui_glow::CallbackFn` while the `wgpu`
    /// backend requires a `egui_wgpu::Callback`.
    ///
    /// If the type cannot be downcast to the type expected by the current backend the callback
    /// will not be drawn.
    ///
    /// The rendering backend is responsible for first setting the active viewport to
    /// [`Self::rect`].
    ///
    /// The rendering backend is also responsible for restoring any state, such as the bound shader
    /// program, vertex array, etc.
    ///
    /// Shape has to be clone, therefore this has to be an `Arc` instead of a `Box`.
    pub callback: Arc<dyn Any + Send + Sync>,
}

impl std::fmt::Debug for PaintCallback {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("CustomShape")
            .field("rect", &self.rect)
            .finish_non_exhaustive()
    }
}

impl std::cmp::PartialEq for PaintCallback {
    fn eq(&self, other: &Self) -> bool {
        self.rect.eq(&other.rect) && Arc::ptr_eq(&self.callback, &other.callback)
    }
}

impl From<PaintCallback> for Shape {
    #[inline(always)]
    fn from(shape: PaintCallback) -> Self {
        Self::Callback(shape)
    }
}