1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
#![stable(feature = "duration_core", since = "1.25.0")]

//! Temporal quantification.
//!
//! # Examples:
//!
//! There are multiple ways to create a new [`Duration`]:
//!
//! ```
//! # use std::time::Duration;
//! let five_seconds = Duration::from_secs(5);
//! assert_eq!(five_seconds, Duration::from_millis(5_000));
//! assert_eq!(five_seconds, Duration::from_micros(5_000_000));
//! assert_eq!(five_seconds, Duration::from_nanos(5_000_000_000));
//!
//! let ten_seconds = Duration::from_secs(10);
//! let seven_nanos = Duration::from_nanos(7);
//! let total = ten_seconds + seven_nanos;
//! assert_eq!(total, Duration::new(10, 7));
//! ```

use crate::fmt;
use crate::iter::Sum;
use crate::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Sub, SubAssign};

const NANOS_PER_SEC: u32 = 1_000_000_000;
const NANOS_PER_MILLI: u32 = 1_000_000;
const NANOS_PER_MICRO: u32 = 1_000;
const MILLIS_PER_SEC: u64 = 1_000;
const MICROS_PER_SEC: u64 = 1_000_000;

#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(transparent)]
#[rustc_layout_scalar_valid_range_start(0)]
#[rustc_layout_scalar_valid_range_end(999_999_999)]
struct Nanoseconds(u32);

impl Default for Nanoseconds {
    #[inline]
    fn default() -> Self {
        // SAFETY: 0 is within the valid range
        unsafe { Nanoseconds(0) }
    }
}

/// A `Duration` type to represent a span of time, typically used for system
/// timeouts.
///
/// Each `Duration` is composed of a whole number of seconds and a fractional part
/// represented in nanoseconds. If the underlying system does not support
/// nanosecond-level precision, APIs binding a system timeout will typically round up
/// the number of nanoseconds.
///
/// [`Duration`]s implement many common traits, including [`Add`], [`Sub`], and other
/// [`ops`] traits. It implements [`Default`] by returning a zero-length `Duration`.
///
/// [`ops`]: crate::ops
///
/// # Examples
///
/// ```
/// use std::time::Duration;
///
/// let five_seconds = Duration::new(5, 0);
/// let five_seconds_and_five_nanos = five_seconds + Duration::new(0, 5);
///
/// assert_eq!(five_seconds_and_five_nanos.as_secs(), 5);
/// assert_eq!(five_seconds_and_five_nanos.subsec_nanos(), 5);
///
/// let ten_millis = Duration::from_millis(10);
/// ```
///
/// # Formatting `Duration` values
///
/// `Duration` intentionally does not have a `Display` impl, as there are a
/// variety of ways to format spans of time for human readability. `Duration`
/// provides a `Debug` impl that shows the full precision of the value.
///
/// The `Debug` output uses the non-ASCII "µs" suffix for microseconds. If your
/// program output may appear in contexts that cannot rely on full Unicode
/// compatibility, you may wish to format `Duration` objects yourself or use a
/// crate to do so.
#[stable(feature = "duration", since = "1.3.0")]
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Default)]
#[cfg_attr(not(test), rustc_diagnostic_item = "Duration")]
pub struct Duration {
    secs: u64,
    nanos: Nanoseconds, // Always 0 <= nanos < NANOS_PER_SEC
}

impl Duration {
    /// The duration of one second.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(duration_constants)]
    /// use std::time::Duration;
    ///
    /// assert_eq!(Duration::SECOND, Duration::from_secs(1));
    /// ```
    #[unstable(feature = "duration_constants", issue = "57391")]
    pub const SECOND: Duration = Duration::from_secs(1);

    /// The duration of one millisecond.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(duration_constants)]
    /// use std::time::Duration;
    ///
    /// assert_eq!(Duration::MILLISECOND, Duration::from_millis(1));
    /// ```
    #[unstable(feature = "duration_constants", issue = "57391")]
    pub const MILLISECOND: Duration = Duration::from_millis(1);

    /// The duration of one microsecond.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(duration_constants)]
    /// use std::time::Duration;
    ///
    /// assert_eq!(Duration::MICROSECOND, Duration::from_micros(1));
    /// ```
    #[unstable(feature = "duration_constants", issue = "57391")]
    pub const MICROSECOND: Duration = Duration::from_micros(1);

    /// The duration of one nanosecond.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(duration_constants)]
    /// use std::time::Duration;
    ///
    /// assert_eq!(Duration::NANOSECOND, Duration::from_nanos(1));
    /// ```
    #[unstable(feature = "duration_constants", issue = "57391")]
    pub const NANOSECOND: Duration = Duration::from_nanos(1);

    /// A duration of zero time.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::time::Duration;
    ///
    /// let duration = Duration::ZERO;
    /// assert!(duration.is_zero());
    /// assert_eq!(duration.as_nanos(), 0);
    /// ```
    #[stable(feature = "duration_zero", since = "1.53.0")]
    pub const ZERO: Duration = Duration::from_nanos(0);

    /// The maximum duration.
    ///
    /// May vary by platform as necessary. Must be able to contain the difference between
    /// two instances of [`Instant`] or two instances of [`SystemTime`].
    /// This constraint gives it a value of about 584,942,417,355 years in practice,
    /// which is currently used on all platforms.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::time::Duration;
    ///
    /// assert_eq!(Duration::MAX, Duration::new(u64::MAX, 1_000_000_000 - 1));
    /// ```
    /// [`Instant`]: ../../std/time/struct.Instant.html
    /// [`SystemTime`]: ../../std/time/struct.SystemTime.html
    #[stable(feature = "duration_saturating_ops", since = "1.53.0")]
    pub const MAX: Duration = Duration::new(u64::MAX, NANOS_PER_SEC - 1);

    /// Creates a new `Duration` from the specified number of whole seconds and
    /// additional nanoseconds.
    ///
    /// If the number of nanoseconds is greater than 1 billion (the number of
    /// nanoseconds in a second), then it will carry over into the seconds provided.
    ///
    /// # Panics
    ///
    /// This constructor will panic if the carry from the nanoseconds overflows
    /// the seconds counter.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::time::Duration;
    ///
    /// let five_seconds = Duration::new(5, 0);
    /// ```
    #[stable(feature = "duration", since = "1.3.0")]
    #[inline]
    #[must_use]
    #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")]
    pub const fn new(secs: u64, nanos: u32) -> Duration {
        let secs = match secs.checked_add((nanos / NANOS_PER_SEC) as u64) {
            Some(secs) => secs,
            None => panic!("overflow in Duration::new"),
        };
        let nanos = nanos % NANOS_PER_SEC;
        // SAFETY: nanos % NANOS_PER_SEC < NANOS_PER_SEC, therefore nanos is within the valid range
        Duration { secs, nanos: unsafe { Nanoseconds(nanos) } }
    }

    /// Creates a new `Duration` from the specified number of whole seconds.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::time::Duration;
    ///
    /// let duration = Duration::from_secs(5);
    ///
    /// assert_eq!(5, duration.as_secs());
    /// assert_eq!(0, duration.subsec_nanos());
    /// ```
    #[stable(feature = "duration", since = "1.3.0")]
    #[must_use]
    #[inline]
    #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")]
    pub const fn from_secs(secs: u64) -> Duration {
        Duration::new(secs, 0)
    }

    /// Creates a new `Duration` from the specified number of milliseconds.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::time::Duration;
    ///
    /// let duration = Duration::from_millis(2569);
    ///
    /// assert_eq!(2, duration.as_secs());
    /// assert_eq!(569_000_000, duration.subsec_nanos());
    /// ```
    #[stable(feature = "duration", since = "1.3.0")]
    #[must_use]
    #[inline]
    #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")]
    pub const fn from_millis(millis: u64) -> Duration {
        Duration::new(millis / MILLIS_PER_SEC, ((millis % MILLIS_PER_SEC) as u32) * NANOS_PER_MILLI)
    }

    /// Creates a new `Duration` from the specified number of microseconds.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::time::Duration;
    ///
    /// let duration = Duration::from_micros(1_000_002);
    ///
    /// assert_eq!(1, duration.as_secs());
    /// assert_eq!(2000, duration.subsec_nanos());
    /// ```
    #[stable(feature = "duration_from_micros", since = "1.27.0")]
    #[must_use]
    #[inline]
    #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")]
    pub const fn from_micros(micros: u64) -> Duration {
        Duration::new(micros / MICROS_PER_SEC, ((micros % MICROS_PER_SEC) as u32) * NANOS_PER_MICRO)
    }

    /// Creates a new `Duration` from the specified number of nanoseconds.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::time::Duration;
    ///
    /// let duration = Duration::from_nanos(1_000_000_123);
    ///
    /// assert_eq!(1, duration.as_secs());
    /// assert_eq!(123, duration.subsec_nanos());
    /// ```
    #[stable(feature = "duration_extras", since = "1.27.0")]
    #[must_use]
    #[inline]
    #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")]
    pub const fn from_nanos(nanos: u64) -> Duration {
        Duration::new(nanos / (NANOS_PER_SEC as u64), (nanos % (NANOS_PER_SEC as u64)) as u32)
    }

    /// Returns true if this `Duration` spans no time.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::time::Duration;
    ///
    /// assert!(Duration::ZERO.is_zero());
    /// assert!(Duration::new(0, 0).is_zero());
    /// assert!(Duration::from_nanos(0).is_zero());
    /// assert!(Duration::from_secs(0).is_zero());
    ///
    /// assert!(!Duration::new(1, 1).is_zero());
    /// assert!(!Duration::from_nanos(1).is_zero());
    /// assert!(!Duration::from_secs(1).is_zero());
    /// ```
    #[must_use]
    #[stable(feature = "duration_zero", since = "1.53.0")]
    #[rustc_const_stable(feature = "duration_zero", since = "1.53.0")]
    #[inline]
    pub const fn is_zero(&self) -> bool {
        self.secs == 0 && self.nanos.0 == 0
    }

    /// Returns the number of _whole_ seconds contained by this `Duration`.
    ///
    /// The returned value does not include the fractional (nanosecond) part of the
    /// duration, which can be obtained using [`subsec_nanos`].
    ///
    /// # Examples
    ///
    /// ```
    /// use std::time::Duration;
    ///
    /// let duration = Duration::new(5, 730023852);
    /// assert_eq!(duration.as_secs(), 5);
    /// ```
    ///
    /// To determine the total number of seconds represented by the `Duration`
    /// including the fractional part, use [`as_secs_f64`] or [`as_secs_f32`]
    ///
    /// [`as_secs_f64`]: Duration::as_secs_f64
    /// [`as_secs_f32`]: Duration::as_secs_f32
    /// [`subsec_nanos`]: Duration::subsec_nanos
    #[stable(feature = "duration", since = "1.3.0")]
    #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")]
    #[must_use]
    #[inline]
    pub const fn as_secs(&self) -> u64 {
        self.secs
    }

    /// Returns the fractional part of this `Duration`, in whole milliseconds.
    ///
    /// This method does **not** return the length of the duration when
    /// represented by milliseconds. The returned number always represents a
    /// fractional portion of a second (i.e., it is less than one thousand).
    ///
    /// # Examples
    ///
    /// ```
    /// use std::time::Duration;
    ///
    /// let duration = Duration::from_millis(5432);
    /// assert_eq!(duration.as_secs(), 5);
    /// assert_eq!(duration.subsec_millis(), 432);
    /// ```
    #[stable(feature = "duration_extras", since = "1.27.0")]
    #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")]
    #[must_use]
    #[inline]
    pub const fn subsec_millis(&self) -> u32 {
        self.nanos.0 / NANOS_PER_MILLI
    }

    /// Returns the fractional part of this `Duration`, in whole microseconds.
    ///
    /// This method does **not** return the length of the duration when
    /// represented by microseconds. The returned number always represents a
    /// fractional portion of a second (i.e., it is less than one million).
    ///
    /// # Examples
    ///
    /// ```
    /// use std::time::Duration;
    ///
    /// let duration = Duration::from_micros(1_234_567);
    /// assert_eq!(duration.as_secs(), 1);
    /// assert_eq!(duration.subsec_micros(), 234_567);
    /// ```
    #[stable(feature = "duration_extras", since = "1.27.0")]
    #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")]
    #[must_use]
    #[inline]
    pub const fn subsec_micros(&self) -> u32 {
        self.nanos.0 / NANOS_PER_MICRO
    }

    /// Returns the fractional part of this `Duration`, in nanoseconds.
    ///
    /// This method does **not** return the length of the duration when
    /// represented by nanoseconds. The returned number always represents a
    /// fractional portion of a second (i.e., it is less than one billion).
    ///
    /// # Examples
    ///
    /// ```
    /// use std::time::Duration;
    ///
    /// let duration = Duration::from_millis(5010);
    /// assert_eq!(duration.as_secs(), 5);
    /// assert_eq!(duration.subsec_nanos(), 10_000_000);
    /// ```
    #[stable(feature = "duration", since = "1.3.0")]
    #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")]
    #[must_use]
    #[inline]
    pub const fn subsec_nanos(&self) -> u32 {
        self.nanos.0
    }

    /// Returns the total number of whole milliseconds contained by this `Duration`.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::time::Duration;
    ///
    /// let duration = Duration::new(5, 730023852);
    /// assert_eq!(duration.as_millis(), 5730);
    /// ```
    #[stable(feature = "duration_as_u128", since = "1.33.0")]
    #[rustc_const_stable(feature = "duration_as_u128", since = "1.33.0")]
    #[must_use]
    #[inline]
    pub const fn as_millis(&self) -> u128 {
        self.secs as u128 * MILLIS_PER_SEC as u128 + (self.nanos.0 / NANOS_PER_MILLI) as u128
    }

    /// Returns the total number of whole microseconds contained by this `Duration`.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::time::Duration;
    ///
    /// let duration = Duration::new(5, 730023852);
    /// assert_eq!(duration.as_micros(), 5730023);
    /// ```
    #[stable(feature = "duration_as_u128", since = "1.33.0")]
    #[rustc_const_stable(feature = "duration_as_u128", since = "1.33.0")]
    #[must_use]
    #[inline]
    pub const fn as_micros(&self) -> u128 {
        self.secs as u128 * MICROS_PER_SEC as u128 + (self.nanos.0 / NANOS_PER_MICRO) as u128
    }

    /// Returns the total number of nanoseconds contained by this `Duration`.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::time::Duration;
    ///
    /// let duration = Duration::new(5, 730023852);
    /// assert_eq!(duration.as_nanos(), 5730023852);
    /// ```
    #[stable(feature = "duration_as_u128", since = "1.33.0")]
    #[rustc_const_stable(feature = "duration_as_u128", since = "1.33.0")]
    #[must_use]
    #[inline]
    pub const fn as_nanos(&self) -> u128 {
        self.secs as u128 * NANOS_PER_SEC as u128 + self.nanos.0 as u128
    }

    /// Checked `Duration` addition. Computes `self + other`, returning [`None`]
    /// if overflow occurred.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use std::time::Duration;
    ///
    /// assert_eq!(Duration::new(0, 0).checked_add(Duration::new(0, 1)), Some(Duration::new(0, 1)));
    /// assert_eq!(Duration::new(1, 0).checked_add(Duration::new(u64::MAX, 0)), None);
    /// ```
    #[stable(feature = "duration_checked_ops", since = "1.16.0")]
    #[must_use = "this returns the result of the operation, \
                  without modifying the original"]
    #[inline]
    #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")]
    pub const fn checked_add(self, rhs: Duration) -> Option<Duration> {
        if let Some(mut secs) = self.secs.checked_add(rhs.secs) {
            let mut nanos = self.nanos.0 + rhs.nanos.0;
            if nanos >= NANOS_PER_SEC {
                nanos -= NANOS_PER_SEC;
                if let Some(new_secs) = secs.checked_add(1) {
                    secs = new_secs;
                } else {
                    return None;
                }
            }
            debug_assert!(nanos < NANOS_PER_SEC);
            Some(Duration::new(secs, nanos))
        } else {
            None
        }
    }

    /// Saturating `Duration` addition. Computes `self + other`, returning [`Duration::MAX`]
    /// if overflow occurred.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(duration_constants)]
    /// use std::time::Duration;
    ///
    /// assert_eq!(Duration::new(0, 0).saturating_add(Duration::new(0, 1)), Duration::new(0, 1));
    /// assert_eq!(Duration::new(1, 0).saturating_add(Duration::new(u64::MAX, 0)), Duration::MAX);
    /// ```
    #[stable(feature = "duration_saturating_ops", since = "1.53.0")]
    #[must_use = "this returns the result of the operation, \
                  without modifying the original"]
    #[inline]
    #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")]
    pub const fn saturating_add(self, rhs: Duration) -> Duration {
        match self.checked_add(rhs) {
            Some(res) => res,
            None => Duration::MAX,
        }
    }

    /// Checked `Duration` subtraction. Computes `self - other`, returning [`None`]
    /// if the result would be negative or if overflow occurred.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use std::time::Duration;
    ///
    /// assert_eq!(Duration::new(0, 1).checked_sub(Duration::new(0, 0)), Some(Duration::new(0, 1)));
    /// assert_eq!(Duration::new(0, 0).checked_sub(Duration::new(0, 1)), None);
    /// ```
    #[stable(feature = "duration_checked_ops", since = "1.16.0")]
    #[must_use = "this returns the result of the operation, \
                  without modifying the original"]
    #[inline]
    #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")]
    pub const fn checked_sub(self, rhs: Duration) -> Option<Duration> {
        if let Some(mut secs) = self.secs.checked_sub(rhs.secs) {
            let nanos = if self.nanos.0 >= rhs.nanos.0 {
                self.nanos.0 - rhs.nanos.0
            } else if let Some(sub_secs) = secs.checked_sub(1) {
                secs = sub_secs;
                self.nanos.0 + NANOS_PER_SEC - rhs.nanos.0
            } else {
                return None;
            };
            debug_assert!(nanos < NANOS_PER_SEC);
            Some(Duration::new(secs, nanos))
        } else {
            None
        }
    }

    /// Saturating `Duration` subtraction. Computes `self - other`, returning [`Duration::ZERO`]
    /// if the result would be negative or if overflow occurred.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::time::Duration;
    ///
    /// assert_eq!(Duration::new(0, 1).saturating_sub(Duration::new(0, 0)), Duration::new(0, 1));
    /// assert_eq!(Duration::new(0, 0).saturating_sub(Duration::new(0, 1)), Duration::ZERO);
    /// ```
    #[stable(feature = "duration_saturating_ops", since = "1.53.0")]
    #[must_use = "this returns the result of the operation, \
                  without modifying the original"]
    #[inline]
    #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")]
    pub const fn saturating_sub(self, rhs: Duration) -> Duration {
        match self.checked_sub(rhs) {
            Some(res) => res,
            None => Duration::ZERO,
        }
    }

    /// Checked `Duration` multiplication. Computes `self * other`, returning
    /// [`None`] if overflow occurred.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use std::time::Duration;
    ///
    /// assert_eq!(Duration::new(0, 500_000_001).checked_mul(2), Some(Duration::new(1, 2)));
    /// assert_eq!(Duration::new(u64::MAX - 1, 0).checked_mul(2), None);
    /// ```
    #[stable(feature = "duration_checked_ops", since = "1.16.0")]
    #[must_use = "this returns the result of the operation, \
                  without modifying the original"]
    #[inline]
    #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")]
    pub const fn checked_mul(self, rhs: u32) -> Option<Duration> {
        // Multiply nanoseconds as u64, because it cannot overflow that way.
        let total_nanos = self.nanos.0 as u64 * rhs as u64;
        let extra_secs = total_nanos / (NANOS_PER_SEC as u64);
        let nanos = (total_nanos % (NANOS_PER_SEC as u64)) as u32;
        if let Some(s) = self.secs.checked_mul(rhs as u64) {
            if let Some(secs) = s.checked_add(extra_secs) {
                debug_assert!(nanos < NANOS_PER_SEC);
                return Some(Duration::new(secs, nanos));
            }
        }
        None
    }

    /// Saturating `Duration` multiplication. Computes `self * other`, returning
    /// [`Duration::MAX`] if overflow occurred.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(duration_constants)]
    /// use std::time::Duration;
    ///
    /// assert_eq!(Duration::new(0, 500_000_001).saturating_mul(2), Duration::new(1, 2));
    /// assert_eq!(Duration::new(u64::MAX - 1, 0).saturating_mul(2), Duration::MAX);
    /// ```
    #[stable(feature = "duration_saturating_ops", since = "1.53.0")]
    #[must_use = "this returns the result of the operation, \
                  without modifying the original"]
    #[inline]
    #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")]
    pub const fn saturating_mul(self, rhs: u32) -> Duration {
        match self.checked_mul(rhs) {
            Some(res) => res,
            None => Duration::MAX,
        }
    }

    /// Checked `Duration` division. Computes `self / other`, returning [`None`]
    /// if `other == 0`.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use std::time::Duration;
    ///
    /// assert_eq!(Duration::new(2, 0).checked_div(2), Some(Duration::new(1, 0)));
    /// assert_eq!(Duration::new(1, 0).checked_div(2), Some(Duration::new(0, 500_000_000)));
    /// assert_eq!(Duration::new(2, 0).checked_div(0), None);
    /// ```
    #[stable(feature = "duration_checked_ops", since = "1.16.0")]
    #[must_use = "this returns the result of the operation, \
                  without modifying the original"]
    #[inline]
    #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")]
    pub const fn checked_div(self, rhs: u32) -> Option<Duration> {
        if rhs != 0 {
            let (secs, extra_secs) = (self.secs / (rhs as u64), self.secs % (rhs as u64));
            let (mut nanos, extra_nanos) = (self.nanos.0 / rhs, self.nanos.0 % rhs);
            nanos +=
                ((extra_secs * (NANOS_PER_SEC as u64) + extra_nanos as u64) / (rhs as u64)) as u32;
            debug_assert!(nanos < NANOS_PER_SEC);
            Some(Duration::new(secs, nanos))
        } else {
            None
        }
    }

    /// Returns the number of seconds contained by this `Duration` as `f64`.
    ///
    /// The returned value does include the fractional (nanosecond) part of the duration.
    ///
    /// # Examples
    /// ```
    /// use std::time::Duration;
    ///
    /// let dur = Duration::new(2, 700_000_000);
    /// assert_eq!(dur.as_secs_f64(), 2.7);
    /// ```
    #[stable(feature = "duration_float", since = "1.38.0")]
    #[must_use]
    #[inline]
    #[rustc_const_unstable(feature = "duration_consts_float", issue = "72440")]
    pub const fn as_secs_f64(&self) -> f64 {
        (self.secs as f64) + (self.nanos.0 as f64) / (NANOS_PER_SEC as f64)
    }

    /// Returns the number of seconds contained by this `Duration` as `f32`.
    ///
    /// The returned value does include the fractional (nanosecond) part of the duration.
    ///
    /// # Examples
    /// ```
    /// use std::time::Duration;
    ///
    /// let dur = Duration::new(2, 700_000_000);
    /// assert_eq!(dur.as_secs_f32(), 2.7);
    /// ```
    #[stable(feature = "duration_float", since = "1.38.0")]
    #[must_use]
    #[inline]
    #[rustc_const_unstable(feature = "duration_consts_float", issue = "72440")]
    pub const fn as_secs_f32(&self) -> f32 {
        (self.secs as f32) + (self.nanos.0 as f32) / (NANOS_PER_SEC as f32)
    }

    /// Creates a new `Duration` from the specified number of seconds represented
    /// as `f64`.
    ///
    /// # Panics
    /// This constructor will panic if `secs` is negative, overflows `Duration` or not finite.
    ///
    /// # Examples
    /// ```
    /// use std::time::Duration;
    ///
    /// let res = Duration::from_secs_f64(0.0);
    /// assert_eq!(res, Duration::new(0, 0));
    /// let res = Duration::from_secs_f64(1e-20);
    /// assert_eq!(res, Duration::new(0, 0));
    /// let res = Duration::from_secs_f64(4.2e-7);
    /// assert_eq!(res, Duration::new(0, 420));
    /// let res = Duration::from_secs_f64(2.7);
    /// assert_eq!(res, Duration::new(2, 700_000_000));
    /// let res = Duration::from_secs_f64(3e10);
    /// assert_eq!(res, Duration::new(30_000_000_000, 0));
    /// // subnormal float
    /// let res = Duration::from_secs_f64(f64::from_bits(1));
    /// assert_eq!(res, Duration::new(0, 0));
    /// // conversion uses rounding
    /// let res = Duration::from_secs_f64(0.999e-9);
    /// assert_eq!(res, Duration::new(0, 1));
    /// ```
    #[stable(feature = "duration_float", since = "1.38.0")]
    #[must_use]
    #[inline]
    pub fn from_secs_f64(secs: f64) -> Duration {
        match Duration::try_from_secs_f64(secs) {
            Ok(v) => v,
            Err(e) => panic!("{}", e.description()),
        }
    }

    /// Creates a new `Duration` from the specified number of seconds represented
    /// as `f32`.
    ///
    /// # Panics
    /// This constructor will panic if `secs` is negative, overflows `Duration` or not finite.
    ///
    /// # Examples
    /// ```
    /// use std::time::Duration;
    ///
    /// let res = Duration::from_secs_f32(0.0);
    /// assert_eq!(res, Duration::new(0, 0));
    /// let res = Duration::from_secs_f32(1e-20);
    /// assert_eq!(res, Duration::new(0, 0));
    /// let res = Duration::from_secs_f32(4.2e-7);
    /// assert_eq!(res, Duration::new(0, 420));
    /// let res = Duration::from_secs_f32(2.7);
    /// assert_eq!(res, Duration::new(2, 700_000_048));
    /// let res = Duration::from_secs_f32(3e10);
    /// assert_eq!(res, Duration::new(30_000_001_024, 0));
    /// // subnormal float
    /// let res = Duration::from_secs_f32(f32::from_bits(1));
    /// assert_eq!(res, Duration::new(0, 0));
    /// // conversion uses rounding
    /// let res = Duration::from_secs_f32(0.999e-9);
    /// assert_eq!(res, Duration::new(0, 1));
    /// ```
    #[stable(feature = "duration_float", since = "1.38.0")]
    #[must_use]
    #[inline]
    pub fn from_secs_f32(secs: f32) -> Duration {
        match Duration::try_from_secs_f32(secs) {
            Ok(v) => v,
            Err(e) => panic!("{}", e.description()),
        }
    }

    /// Multiplies `Duration` by `f64`.
    ///
    /// # Panics
    /// This method will panic if result is negative, overflows `Duration` or not finite.
    ///
    /// # Examples
    /// ```
    /// use std::time::Duration;
    ///
    /// let dur = Duration::new(2, 700_000_000);
    /// assert_eq!(dur.mul_f64(3.14), Duration::new(8, 478_000_000));
    /// assert_eq!(dur.mul_f64(3.14e5), Duration::new(847_800, 0));
    /// ```
    #[stable(feature = "duration_float", since = "1.38.0")]
    #[must_use = "this returns the result of the operation, \
                  without modifying the original"]
    #[inline]
    pub fn mul_f64(self, rhs: f64) -> Duration {
        Duration::from_secs_f64(rhs * self.as_secs_f64())
    }

    /// Multiplies `Duration` by `f32`.
    ///
    /// # Panics
    /// This method will panic if result is negative, overflows `Duration` or not finite.
    ///
    /// # Examples
    /// ```
    /// use std::time::Duration;
    ///
    /// let dur = Duration::new(2, 700_000_000);
    /// assert_eq!(dur.mul_f32(3.14), Duration::new(8, 478_000_641));
    /// assert_eq!(dur.mul_f32(3.14e5), Duration::new(847800, 0));
    /// ```
    #[stable(feature = "duration_float", since = "1.38.0")]
    #[must_use = "this returns the result of the operation, \
                  without modifying the original"]
    #[inline]
    pub fn mul_f32(self, rhs: f32) -> Duration {
        Duration::from_secs_f32(rhs * self.as_secs_f32())
    }

    /// Divide `Duration` by `f64`.
    ///
    /// # Panics
    /// This method will panic if result is negative, overflows `Duration` or not finite.
    ///
    /// # Examples
    /// ```
    /// use std::time::Duration;
    ///
    /// let dur = Duration::new(2, 700_000_000);
    /// assert_eq!(dur.div_f64(3.14), Duration::new(0, 859_872_611));
    /// assert_eq!(dur.div_f64(3.14e5), Duration::new(0, 8_599));
    /// ```
    #[stable(feature = "duration_float", since = "1.38.0")]
    #[must_use = "this returns the result of the operation, \
                  without modifying the original"]
    #[inline]
    pub fn div_f64(self, rhs: f64) -> Duration {
        Duration::from_secs_f64(self.as_secs_f64() / rhs)
    }

    /// Divide `Duration` by `f32`.
    ///
    /// # Panics
    /// This method will panic if result is negative, overflows `Duration` or not finite.
    ///
    /// # Examples
    /// ```
    /// use std::time::Duration;
    ///
    /// let dur = Duration::new(2, 700_000_000);
    /// // note that due to rounding errors result is slightly
    /// // different from 0.859_872_611
    /// assert_eq!(dur.div_f32(3.14), Duration::new(0, 859_872_580));
    /// assert_eq!(dur.div_f32(3.14e5), Duration::new(0, 8_599));
    /// ```
    #[stable(feature = "duration_float", since = "1.38.0")]
    #[must_use = "this returns the result of the operation, \
                  without modifying the original"]
    #[inline]
    pub fn div_f32(self, rhs: f32) -> Duration {
        Duration::from_secs_f32(self.as_secs_f32() / rhs)
    }

    /// Divide `Duration` by `Duration` and return `f64`.
    ///
    /// # Examples
    /// ```
    /// #![feature(div_duration)]
    /// use std::time::Duration;
    ///
    /// let dur1 = Duration::new(2, 700_000_000);
    /// let dur2 = Duration::new(5, 400_000_000);
    /// assert_eq!(dur1.div_duration_f64(dur2), 0.5);
    /// ```
    #[unstable(feature = "div_duration", issue = "63139")]
    #[must_use = "this returns the result of the operation, \
                  without modifying the original"]
    #[inline]
    #[rustc_const_unstable(feature = "duration_consts_float", issue = "72440")]
    pub const fn div_duration_f64(self, rhs: Duration) -> f64 {
        self.as_secs_f64() / rhs.as_secs_f64()
    }

    /// Divide `Duration` by `Duration` and return `f32`.
    ///
    /// # Examples
    /// ```
    /// #![feature(div_duration)]
    /// use std::time::Duration;
    ///
    /// let dur1 = Duration::new(2, 700_000_000);
    /// let dur2 = Duration::new(5, 400_000_000);
    /// assert_eq!(dur1.div_duration_f32(dur2), 0.5);
    /// ```
    #[unstable(feature = "div_duration", issue = "63139")]
    #[must_use = "this returns the result of the operation, \
                  without modifying the original"]
    #[inline]
    #[rustc_const_unstable(feature = "duration_consts_float", issue = "72440")]
    pub const fn div_duration_f32(self, rhs: Duration) -> f32 {
        self.as_secs_f32() / rhs.as_secs_f32()
    }
}

#[stable(feature = "duration", since = "1.3.0")]
impl Add for Duration {
    type Output = Duration;

    fn add(self, rhs: Duration) -> Duration {
        self.checked_add(rhs).expect("overflow when adding durations")
    }
}

#[stable(feature = "time_augmented_assignment", since = "1.9.0")]
impl AddAssign for Duration {
    fn add_assign(&mut self, rhs: Duration) {
        *self = *self + rhs;
    }
}

#[stable(feature = "duration", since = "1.3.0")]
impl Sub for Duration {
    type Output = Duration;

    fn sub(self, rhs: Duration) -> Duration {
        self.checked_sub(rhs).expect("overflow when subtracting durations")
    }
}

#[stable(feature = "time_augmented_assignment", since = "1.9.0")]
impl SubAssign for Duration {
    fn sub_assign(&mut self, rhs: Duration) {
        *self = *self - rhs;
    }
}

#[stable(feature = "duration", since = "1.3.0")]
impl Mul<u32> for Duration {
    type Output = Duration;

    fn mul(self, rhs: u32) -> Duration {
        self.checked_mul(rhs).expect("overflow when multiplying duration by scalar")
    }
}

#[stable(feature = "symmetric_u32_duration_mul", since = "1.31.0")]
impl Mul<Duration> for u32 {
    type Output = Duration;

    fn mul(self, rhs: Duration) -> Duration {
        rhs * self
    }
}

#[stable(feature = "time_augmented_assignment", since = "1.9.0")]
impl MulAssign<u32> for Duration {
    fn mul_assign(&mut self, rhs: u32) {
        *self = *self * rhs;
    }
}

#[stable(feature = "duration", since = "1.3.0")]
impl Div<u32> for Duration {
    type Output = Duration;

    fn div(self, rhs: u32) -> Duration {
        self.checked_div(rhs).expect("divide by zero error when dividing duration by scalar")
    }
}

#[stable(feature = "time_augmented_assignment", since = "1.9.0")]
impl DivAssign<u32> for Duration {
    fn div_assign(&mut self, rhs: u32) {
        *self = *self / rhs;
    }
}

macro_rules! sum_durations {
    ($iter:expr) => {{
        let mut total_secs: u64 = 0;
        let mut total_nanos: u64 = 0;

        for entry in $iter {
            total_secs =
                total_secs.checked_add(entry.secs).expect("overflow in iter::sum over durations");
            total_nanos = match total_nanos.checked_add(entry.nanos.0 as u64) {
                Some(n) => n,
                None => {
                    total_secs = total_secs
                        .checked_add(total_nanos / NANOS_PER_SEC as u64)
                        .expect("overflow in iter::sum over durations");
                    (total_nanos % NANOS_PER_SEC as u64) + entry.nanos.0 as u64
                }
            };
        }
        total_secs = total_secs
            .checked_add(total_nanos / NANOS_PER_SEC as u64)
            .expect("overflow in iter::sum over durations");
        total_nanos = total_nanos % NANOS_PER_SEC as u64;
        Duration::new(total_secs, total_nanos as u32)
    }};
}

#[stable(feature = "duration_sum", since = "1.16.0")]
impl Sum for Duration {
    fn sum<I: Iterator<Item = Duration>>(iter: I) -> Duration {
        sum_durations!(iter)
    }
}

#[stable(feature = "duration_sum", since = "1.16.0")]
impl<'a> Sum<&'a Duration> for Duration {
    fn sum<I: Iterator<Item = &'a Duration>>(iter: I) -> Duration {
        sum_durations!(iter)
    }
}

#[stable(feature = "duration_debug_impl", since = "1.27.0")]
impl fmt::Debug for Duration {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        /// Formats a floating point number in decimal notation.
        ///
        /// The number is given as the `integer_part` and a fractional part.
        /// The value of the fractional part is `fractional_part / divisor`. So
        /// `integer_part` = 3, `fractional_part` = 12 and `divisor` = 100
        /// represents the number `3.012`. Trailing zeros are omitted.
        ///
        /// `divisor` must not be above 100_000_000. It also should be a power
        /// of 10, everything else doesn't make sense. `fractional_part` has
        /// to be less than `10 * divisor`!
        ///
        /// A prefix and postfix may be added. The whole thing is padded
        /// to the formatter's `width`, if specified.
        fn fmt_decimal(
            f: &mut fmt::Formatter<'_>,
            integer_part: u64,
            mut fractional_part: u32,
            mut divisor: u32,
            prefix: &str,
            postfix: &str,
        ) -> fmt::Result {
            // Encode the fractional part into a temporary buffer. The buffer
            // only need to hold 9 elements, because `fractional_part` has to
            // be smaller than 10^9. The buffer is prefilled with '0' digits
            // to simplify the code below.
            let mut buf = [b'0'; 9];

            // The next digit is written at this position
            let mut pos = 0;

            // We keep writing digits into the buffer while there are non-zero
            // digits left and we haven't written enough digits yet.
            while fractional_part > 0 && pos < f.precision().unwrap_or(9) {
                // Write new digit into the buffer
                buf[pos] = b'0' + (fractional_part / divisor) as u8;

                fractional_part %= divisor;
                divisor /= 10;
                pos += 1;
            }

            // If a precision < 9 was specified, there may be some non-zero
            // digits left that weren't written into the buffer. In that case we
            // need to perform rounding to match the semantics of printing
            // normal floating point numbers. However, we only need to do work
            // when rounding up. This happens if the first digit of the
            // remaining ones is >= 5.
            let integer_part = if fractional_part > 0 && fractional_part >= divisor * 5 {
                // Round up the number contained in the buffer. We go through
                // the buffer backwards and keep track of the carry.
                let mut rev_pos = pos;
                let mut carry = true;
                while carry && rev_pos > 0 {
                    rev_pos -= 1;

                    // If the digit in the buffer is not '9', we just need to
                    // increment it and can stop then (since we don't have a
                    // carry anymore). Otherwise, we set it to '0' (overflow)
                    // and continue.
                    if buf[rev_pos] < b'9' {
                        buf[rev_pos] += 1;
                        carry = false;
                    } else {
                        buf[rev_pos] = b'0';
                    }
                }

                // If we still have the carry bit set, that means that we set
                // the whole buffer to '0's and need to increment the integer
                // part.
                if carry {
                    // If `integer_part == u64::MAX` and precision < 9, any
                    // carry of the overflow during rounding of the
                    // `fractional_part` into the `integer_part` will cause the
                    // `integer_part` itself to overflow. Avoid this by using an
                    // `Option<u64>`, with `None` representing `u64::MAX + 1`.
                    integer_part.checked_add(1)
                } else {
                    Some(integer_part)
                }
            } else {
                Some(integer_part)
            };

            // Determine the end of the buffer: if precision is set, we just
            // use as many digits from the buffer (capped to 9). If it isn't
            // set, we only use all digits up to the last non-zero one.
            let end = f.precision().map(|p| crate::cmp::min(p, 9)).unwrap_or(pos);

            // This closure emits the formatted duration without emitting any
            // padding (padding is calculated below).
            let emit_without_padding = |f: &mut fmt::Formatter<'_>| {
                if let Some(integer_part) = integer_part {
                    write!(f, "{}{}", prefix, integer_part)?;
                } else {
                    // u64::MAX + 1 == 18446744073709551616
                    write!(f, "{}18446744073709551616", prefix)?;
                }

                // Write the decimal point and the fractional part (if any).
                if end > 0 {
                    // SAFETY: We are only writing ASCII digits into the buffer and
                    // it was initialized with '0's, so it contains valid UTF8.
                    let s = unsafe { crate::str::from_utf8_unchecked(&buf[..end]) };

                    // If the user request a precision > 9, we pad '0's at the end.
                    let w = f.precision().unwrap_or(pos);
                    write!(f, ".{:0<width$}", s, width = w)?;
                }

                write!(f, "{}", postfix)
            };

            match f.width() {
                None => {
                    // No `width` specified. There's no need to calculate the
                    // length of the output in this case, just emit it.
                    emit_without_padding(f)
                }
                Some(requested_w) => {
                    // A `width` was specified. Calculate the actual width of
                    // the output in order to calculate the required padding.
                    // It consists of 4 parts:
                    // 1. The prefix: is either "+" or "", so we can just use len().
                    // 2. The postfix: can be "µs" so we have to count UTF8 characters.
                    let mut actual_w = prefix.len() + postfix.chars().count();
                    // 3. The integer part:
                    if let Some(integer_part) = integer_part {
                        if let Some(log) = integer_part.checked_ilog10() {
                            // integer_part is > 0, so has length log10(x)+1
                            actual_w += 1 + log as usize;
                        } else {
                            // integer_part is 0, so has length 1.
                            actual_w += 1;
                        }
                    } else {
                        // integer_part is u64::MAX + 1, so has length 20
                        actual_w += 20;
                    }
                    // 4. The fractional part (if any):
                    if end > 0 {
                        let frac_part_w = f.precision().unwrap_or(pos);
                        actual_w += 1 + frac_part_w;
                    }

                    if requested_w <= actual_w {
                        // Output is already longer than `width`, so don't pad.
                        emit_without_padding(f)
                    } else {
                        // We need to add padding. Use the `Formatter::padding` helper function.
                        let default_align = fmt::Alignment::Left;
                        let post_padding = f.padding(requested_w - actual_w, default_align)?;
                        emit_without_padding(f)?;
                        post_padding.write(f)
                    }
                }
            }
        }

        // Print leading '+' sign if requested
        let prefix = if f.sign_plus() { "+" } else { "" };

        if self.secs > 0 {
            fmt_decimal(f, self.secs, self.nanos.0, NANOS_PER_SEC / 10, prefix, "s")
        } else if self.nanos.0 >= NANOS_PER_MILLI {
            fmt_decimal(
                f,
                (self.nanos.0 / NANOS_PER_MILLI) as u64,
                self.nanos.0 % NANOS_PER_MILLI,
                NANOS_PER_MILLI / 10,
                prefix,
                "ms",
            )
        } else if self.nanos.0 >= NANOS_PER_MICRO {
            fmt_decimal(
                f,
                (self.nanos.0 / NANOS_PER_MICRO) as u64,
                self.nanos.0 % NANOS_PER_MICRO,
                NANOS_PER_MICRO / 10,
                prefix,
                "µs",
            )
        } else {
            fmt_decimal(f, self.nanos.0 as u64, 0, 1, prefix, "ns")
        }
    }
}

/// An error which can be returned when converting a floating-point value of seconds
/// into a [`Duration`].
///
/// This error is used as the error type for [`Duration::try_from_secs_f32`] and
/// [`Duration::try_from_secs_f64`].
///
/// # Example
///
/// ```
/// use std::time::Duration;
///
/// if let Err(e) = Duration::try_from_secs_f32(-1.0) {
///     println!("Failed conversion to Duration: {e}");
/// }
/// ```
#[derive(Debug, Clone, PartialEq, Eq)]
#[stable(feature = "duration_checked_float", since = "1.66.0")]
pub struct TryFromFloatSecsError {
    kind: TryFromFloatSecsErrorKind,
}

impl TryFromFloatSecsError {
    const fn description(&self) -> &'static str {
        match self.kind {
            TryFromFloatSecsErrorKind::Negative => {
                "can not convert float seconds to Duration: value is negative"
            }
            TryFromFloatSecsErrorKind::OverflowOrNan => {
                "can not convert float seconds to Duration: value is either too big or NaN"
            }
        }
    }
}

#[stable(feature = "duration_checked_float", since = "1.66.0")]
impl fmt::Display for TryFromFloatSecsError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.description().fmt(f)
    }
}

#[derive(Debug, Clone, PartialEq, Eq)]
enum TryFromFloatSecsErrorKind {
    // Value is negative.
    Negative,
    // Value is either too big to be represented as `Duration` or `NaN`.
    OverflowOrNan,
}

macro_rules! try_from_secs {
    (
        secs = $secs: expr,
        mantissa_bits = $mant_bits: literal,
        exponent_bits = $exp_bits: literal,
        offset = $offset: literal,
        bits_ty = $bits_ty:ty,
        double_ty = $double_ty:ty,
    ) => {{
        const MIN_EXP: i16 = 1 - (1i16 << $exp_bits) / 2;
        const MANT_MASK: $bits_ty = (1 << $mant_bits) - 1;
        const EXP_MASK: $bits_ty = (1 << $exp_bits) - 1;

        if $secs < 0.0 {
            return Err(TryFromFloatSecsError { kind: TryFromFloatSecsErrorKind::Negative });
        }

        let bits = $secs.to_bits();
        let mant = (bits & MANT_MASK) | (MANT_MASK + 1);
        let exp = ((bits >> $mant_bits) & EXP_MASK) as i16 + MIN_EXP;

        let (secs, nanos) = if exp < -31 {
            // the input represents less than 1ns and can not be rounded to it
            (0u64, 0u32)
        } else if exp < 0 {
            // the input is less than 1 second
            let t = <$double_ty>::from(mant) << ($offset + exp);
            let nanos_offset = $mant_bits + $offset;
            let nanos_tmp = u128::from(NANOS_PER_SEC) * u128::from(t);
            let nanos = (nanos_tmp >> nanos_offset) as u32;

            let rem_mask = (1 << nanos_offset) - 1;
            let rem_msb_mask = 1 << (nanos_offset - 1);
            let rem = nanos_tmp & rem_mask;
            let is_tie = rem == rem_msb_mask;
            let is_even = (nanos & 1) == 0;
            let rem_msb = nanos_tmp & rem_msb_mask == 0;
            let add_ns = !(rem_msb || (is_even && is_tie));

            // f32 does not have enough precision to trigger the second branch
            // since it can not represent numbers between 0.999_999_940_395 and 1.0.
            let nanos = nanos + add_ns as u32;
            if ($mant_bits == 23) || (nanos != NANOS_PER_SEC) { (0, nanos) } else { (1, 0) }
        } else if exp < $mant_bits {
            let secs = u64::from(mant >> ($mant_bits - exp));
            let t = <$double_ty>::from((mant << exp) & MANT_MASK);
            let nanos_offset = $mant_bits;
            let nanos_tmp = <$double_ty>::from(NANOS_PER_SEC) * t;
            let nanos = (nanos_tmp >> nanos_offset) as u32;

            let rem_mask = (1 << nanos_offset) - 1;
            let rem_msb_mask = 1 << (nanos_offset - 1);
            let rem = nanos_tmp & rem_mask;
            let is_tie = rem == rem_msb_mask;
            let is_even = (nanos & 1) == 0;
            let rem_msb = nanos_tmp & rem_msb_mask == 0;
            let add_ns = !(rem_msb || (is_even && is_tie));

            // f32 does not have enough precision to trigger the second branch.
            // For example, it can not represent numbers between 1.999_999_880...
            // and 2.0. Bigger values result in even smaller precision of the
            // fractional part.
            let nanos = nanos + add_ns as u32;
            if ($mant_bits == 23) || (nanos != NANOS_PER_SEC) {
                (secs, nanos)
            } else {
                (secs + 1, 0)
            }
        } else if exp < 64 {
            // the input has no fractional part
            let secs = u64::from(mant) << (exp - $mant_bits);
            (secs, 0)
        } else {
            return Err(TryFromFloatSecsError { kind: TryFromFloatSecsErrorKind::OverflowOrNan });
        };

        Ok(Duration::new(secs, nanos))
    }};
}

impl Duration {
    /// The checked version of [`from_secs_f32`].
    ///
    /// [`from_secs_f32`]: Duration::from_secs_f32
    ///
    /// This constructor will return an `Err` if `secs` is negative, overflows `Duration` or not finite.
    ///
    /// # Examples
    /// ```
    /// use std::time::Duration;
    ///
    /// let res = Duration::try_from_secs_f32(0.0);
    /// assert_eq!(res, Ok(Duration::new(0, 0)));
    /// let res = Duration::try_from_secs_f32(1e-20);
    /// assert_eq!(res, Ok(Duration::new(0, 0)));
    /// let res = Duration::try_from_secs_f32(4.2e-7);
    /// assert_eq!(res, Ok(Duration::new(0, 420)));
    /// let res = Duration::try_from_secs_f32(2.7);
    /// assert_eq!(res, Ok(Duration::new(2, 700_000_048)));
    /// let res = Duration::try_from_secs_f32(3e10);
    /// assert_eq!(res, Ok(Duration::new(30_000_001_024, 0)));
    /// // subnormal float:
    /// let res = Duration::try_from_secs_f32(f32::from_bits(1));
    /// assert_eq!(res, Ok(Duration::new(0, 0)));
    ///
    /// let res = Duration::try_from_secs_f32(-5.0);
    /// assert!(res.is_err());
    /// let res = Duration::try_from_secs_f32(f32::NAN);
    /// assert!(res.is_err());
    /// let res = Duration::try_from_secs_f32(2e19);
    /// assert!(res.is_err());
    ///
    /// // the conversion uses rounding with tie resolution to even
    /// let res = Duration::try_from_secs_f32(0.999e-9);
    /// assert_eq!(res, Ok(Duration::new(0, 1)));
    ///
    /// // this float represents exactly 976562.5e-9
    /// let val = f32::from_bits(0x3A80_0000);
    /// let res = Duration::try_from_secs_f32(val);
    /// assert_eq!(res, Ok(Duration::new(0, 976_562)));
    ///
    /// // this float represents exactly 2929687.5e-9
    /// let val = f32::from_bits(0x3B40_0000);
    /// let res = Duration::try_from_secs_f32(val);
    /// assert_eq!(res, Ok(Duration::new(0, 2_929_688)));
    ///
    /// // this float represents exactly 1.000_976_562_5
    /// let val = f32::from_bits(0x3F802000);
    /// let res = Duration::try_from_secs_f32(val);
    /// assert_eq!(res, Ok(Duration::new(1, 976_562)));
    ///
    /// // this float represents exactly 1.002_929_687_5
    /// let val = f32::from_bits(0x3F806000);
    /// let res = Duration::try_from_secs_f32(val);
    /// assert_eq!(res, Ok(Duration::new(1, 2_929_688)));
    /// ```
    #[stable(feature = "duration_checked_float", since = "1.66.0")]
    #[inline]
    pub fn try_from_secs_f32(secs: f32) -> Result<Duration, TryFromFloatSecsError> {
        try_from_secs!(
            secs = secs,
            mantissa_bits = 23,
            exponent_bits = 8,
            offset = 41,
            bits_ty = u32,
            double_ty = u64,
        )
    }

    /// The checked version of [`from_secs_f64`].
    ///
    /// [`from_secs_f64`]: Duration::from_secs_f64
    ///
    /// This constructor will return an `Err` if `secs` is negative, overflows `Duration` or not finite.
    ///
    /// # Examples
    /// ```
    /// use std::time::Duration;
    ///
    /// let res = Duration::try_from_secs_f64(0.0);
    /// assert_eq!(res, Ok(Duration::new(0, 0)));
    /// let res = Duration::try_from_secs_f64(1e-20);
    /// assert_eq!(res, Ok(Duration::new(0, 0)));
    /// let res = Duration::try_from_secs_f64(4.2e-7);
    /// assert_eq!(res, Ok(Duration::new(0, 420)));
    /// let res = Duration::try_from_secs_f64(2.7);
    /// assert_eq!(res, Ok(Duration::new(2, 700_000_000)));
    /// let res = Duration::try_from_secs_f64(3e10);
    /// assert_eq!(res, Ok(Duration::new(30_000_000_000, 0)));
    /// // subnormal float
    /// let res = Duration::try_from_secs_f64(f64::from_bits(1));
    /// assert_eq!(res, Ok(Duration::new(0, 0)));
    ///
    /// let res = Duration::try_from_secs_f64(-5.0);
    /// assert!(res.is_err());
    /// let res = Duration::try_from_secs_f64(f64::NAN);
    /// assert!(res.is_err());
    /// let res = Duration::try_from_secs_f64(2e19);
    /// assert!(res.is_err());
    ///
    /// // the conversion uses rounding with tie resolution to even
    /// let res = Duration::try_from_secs_f64(0.999e-9);
    /// assert_eq!(res, Ok(Duration::new(0, 1)));
    /// let res = Duration::try_from_secs_f64(0.999_999_999_499);
    /// assert_eq!(res, Ok(Duration::new(0, 999_999_999)));
    /// let res = Duration::try_from_secs_f64(0.999_999_999_501);
    /// assert_eq!(res, Ok(Duration::new(1, 0)));
    /// let res = Duration::try_from_secs_f64(42.999_999_999_499);
    /// assert_eq!(res, Ok(Duration::new(42, 999_999_999)));
    /// let res = Duration::try_from_secs_f64(42.999_999_999_501);
    /// assert_eq!(res, Ok(Duration::new(43, 0)));
    ///
    /// // this float represents exactly 976562.5e-9
    /// let val = f64::from_bits(0x3F50_0000_0000_0000);
    /// let res = Duration::try_from_secs_f64(val);
    /// assert_eq!(res, Ok(Duration::new(0, 976_562)));
    ///
    /// // this float represents exactly 2929687.5e-9
    /// let val = f64::from_bits(0x3F68_0000_0000_0000);
    /// let res = Duration::try_from_secs_f64(val);
    /// assert_eq!(res, Ok(Duration::new(0, 2_929_688)));
    ///
    /// // this float represents exactly 1.000_976_562_5
    /// let val = f64::from_bits(0x3FF0_0400_0000_0000);
    /// let res = Duration::try_from_secs_f64(val);
    /// assert_eq!(res, Ok(Duration::new(1, 976_562)));
    ///
    /// // this float represents exactly 1.002_929_687_5
    /// let val = f64::from_bits(0x3_FF00_C000_0000_000);
    /// let res = Duration::try_from_secs_f64(val);
    /// assert_eq!(res, Ok(Duration::new(1, 2_929_688)));
    /// ```
    #[stable(feature = "duration_checked_float", since = "1.66.0")]
    #[inline]
    pub fn try_from_secs_f64(secs: f64) -> Result<Duration, TryFromFloatSecsError> {
        try_from_secs!(
            secs = secs,
            mantissa_bits = 52,
            exponent_bits = 11,
            offset = 44,
            bits_ty = u64,
            double_ty = u128,
        )
    }
}