1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
use convert::TryFrom;
use mem;
use ops::{self, Add, Sub};
use usize;

use super::{FusedIterator, TrustedLen};

/// Objects that can be stepped over in both directions.
///
/// The `steps_between` function provides a way to efficiently compare
/// two `Step` objects.
#[unstable(feature = "step_trait",
           reason = "likely to be replaced by finer-grained traits",
           issue = "42168")]
pub trait Step: Clone + PartialOrd + Sized {
    /// Returns the number of steps between two step objects. The count is
    /// inclusive of `start` and exclusive of `end`.
    ///
    /// Returns `None` if it is not possible to calculate `steps_between`
    /// without overflow.
    fn steps_between(start: &Self, end: &Self) -> Option<usize>;

    /// Replaces this step with `1`, returning itself
    fn replace_one(&mut self) -> Self;

    /// Replaces this step with `0`, returning itself
    fn replace_zero(&mut self) -> Self;

    /// Adds one to this step, returning the result
    fn add_one(&self) -> Self;

    /// Subtracts one to this step, returning the result
    fn sub_one(&self) -> Self;

    /// Add an usize, returning None on overflow
    fn add_usize(&self, n: usize) -> Option<Self>;
}

// These are still macro-generated because the integer literals resolve to different types.
macro_rules! step_identical_methods {
    () => {
        #[inline]
        fn replace_one(&mut self) -> Self {
            mem::replace(self, 1)
        }

        #[inline]
        fn replace_zero(&mut self) -> Self {
            mem::replace(self, 0)
        }

        #[inline]
        fn add_one(&self) -> Self {
            Add::add(*self, 1)
        }

        #[inline]
        fn sub_one(&self) -> Self {
            Sub::sub(*self, 1)
        }
    }
}

macro_rules! step_impl_unsigned {
    ($($t:ty)*) => ($(
        #[unstable(feature = "step_trait",
                   reason = "likely to be replaced by finer-grained traits",
                   issue = "42168")]
        impl Step for $t {
            #[inline]
            #[allow(trivial_numeric_casts)]
            fn steps_between(start: &$t, end: &$t) -> Option<usize> {
                if *start < *end {
                    // Note: We assume $t <= usize here
                    Some((*end - *start) as usize)
                } else {
                    Some(0)
                }
            }

            #[inline]
            #[allow(unreachable_patterns)]
            fn add_usize(&self, n: usize) -> Option<Self> {
                match <$t>::try_from(n) {
                    Ok(n_as_t) => self.checked_add(n_as_t),
                    Err(_) => None,
                }
            }

            step_identical_methods!();
        }
    )*)
}
macro_rules! step_impl_signed {
    ($( [$t:ty : $unsigned:ty] )*) => ($(
        #[unstable(feature = "step_trait",
                   reason = "likely to be replaced by finer-grained traits",
                   issue = "42168")]
        impl Step for $t {
            #[inline]
            #[allow(trivial_numeric_casts)]
            fn steps_between(start: &$t, end: &$t) -> Option<usize> {
                if *start < *end {
                    // Note: We assume $t <= isize here
                    // Use .wrapping_sub and cast to usize to compute the
                    // difference that may not fit inside the range of isize.
                    Some((*end as isize).wrapping_sub(*start as isize) as usize)
                } else {
                    Some(0)
                }
            }

            #[inline]
            #[allow(unreachable_patterns)]
            fn add_usize(&self, n: usize) -> Option<Self> {
                match <$unsigned>::try_from(n) {
                    Ok(n_as_unsigned) => {
                        // Wrapping in unsigned space handles cases like
                        // `-120_i8.add_usize(200) == Some(80_i8)`,
                        // even though 200_usize is out of range for i8.
                        let wrapped = (*self as $unsigned).wrapping_add(n_as_unsigned) as $t;
                        if wrapped >= *self {
                            Some(wrapped)
                        } else {
                            None  // Addition overflowed
                        }
                    }
                    Err(_) => None,
                }
            }

            step_identical_methods!();
        }
    )*)
}

macro_rules! step_impl_no_between {
    ($($t:ty)*) => ($(
        #[unstable(feature = "step_trait",
                   reason = "likely to be replaced by finer-grained traits",
                   issue = "42168")]
        impl Step for $t {
            #[inline]
            fn steps_between(_start: &Self, _end: &Self) -> Option<usize> {
                None
            }

            #[inline]
            fn add_usize(&self, n: usize) -> Option<Self> {
                self.checked_add(n as $t)
            }

            step_identical_methods!();
        }
    )*)
}

step_impl_unsigned!(usize u8 u16);
#[cfg(not(target_pointer_width = "16"))]
step_impl_unsigned!(u32);
#[cfg(target_pointer_width = "16")]
step_impl_no_between!(u32);
step_impl_signed!([isize: usize] [i8: u8] [i16: u16]);
#[cfg(not(target_pointer_width = "16"))]
step_impl_signed!([i32: u32]);
#[cfg(target_pointer_width = "16")]
step_impl_no_between!(i32);
#[cfg(target_pointer_width = "64")]
step_impl_unsigned!(u64);
#[cfg(target_pointer_width = "64")]
step_impl_signed!([i64: u64]);
// If the target pointer width is not 64-bits, we
// assume here that it is less than 64-bits.
#[cfg(not(target_pointer_width = "64"))]
step_impl_no_between!(u64 i64);
step_impl_no_between!(u128 i128);

macro_rules! range_exact_iter_impl {
    ($($t:ty)*) => ($(
        #[stable(feature = "rust1", since = "1.0.0")]
        impl ExactSizeIterator for ops::Range<$t> { }
    )*)
}

macro_rules! range_incl_exact_iter_impl {
    ($($t:ty)*) => ($(
        #[stable(feature = "inclusive_range", since = "1.26.0")]
        impl ExactSizeIterator for ops::RangeInclusive<$t> { }
    )*)
}

macro_rules! range_trusted_len_impl {
    ($($t:ty)*) => ($(
        #[unstable(feature = "trusted_len", issue = "37572")]
        unsafe impl TrustedLen for ops::Range<$t> { }
    )*)
}

macro_rules! range_incl_trusted_len_impl {
    ($($t:ty)*) => ($(
        #[unstable(feature = "trusted_len", issue = "37572")]
        unsafe impl TrustedLen for ops::RangeInclusive<$t> { }
    )*)
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<A: Step> Iterator for ops::Range<A> {
    type Item = A;

    #[inline]
    fn next(&mut self) -> Option<A> {
        if self.start < self.end {
            // We check for overflow here, even though it can't actually
            // happen. Adding this check does however help llvm vectorize loops
            // for some ranges that don't get vectorized otherwise,
            // and this won't actually result in an extra check in an optimized build.
            if let Some(mut n) = self.start.add_usize(1) {
                mem::swap(&mut n, &mut self.start);
                Some(n)
            } else {
                None
            }
        } else {
            None
        }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        match Step::steps_between(&self.start, &self.end) {
            Some(hint) => (hint, Some(hint)),
            None => (0, None)
        }
    }

    #[inline]
    fn nth(&mut self, n: usize) -> Option<A> {
        if let Some(plus_n) = self.start.add_usize(n) {
            if plus_n < self.end {
                self.start = plus_n.add_one();
                return Some(plus_n)
            }
        }

        self.start = self.end.clone();
        None
    }

    #[inline]
    fn last(mut self) -> Option<A> {
        self.next_back()
    }

    #[inline]
    fn min(mut self) -> Option<A> {
        self.next()
    }

    #[inline]
    fn max(mut self) -> Option<A> {
        self.next_back()
    }
}

// These macros generate `ExactSizeIterator` impls for various range types.
// Range<{u,i}64> and RangeInclusive<{u,i}{32,64,size}> are excluded
// because they cannot guarantee having a length <= usize::MAX, which is
// required by ExactSizeIterator.
range_exact_iter_impl!(usize u8 u16 u32 isize i8 i16 i32);
range_incl_exact_iter_impl!(u8 u16 i8 i16);

// These macros generate `TrustedLen` impls.
//
// They need to guarantee that .size_hint() is either exact, or that
// the upper bound is None when it does not fit the type limits.
range_trusted_len_impl!(usize isize u8 i8 u16 i16 u32 i32 i64 u64);
range_incl_trusted_len_impl!(usize isize u8 i8 u16 i16 u32 i32 i64 u64);

#[stable(feature = "rust1", since = "1.0.0")]
impl<A: Step> DoubleEndedIterator for ops::Range<A> {
    #[inline]
    fn next_back(&mut self) -> Option<A> {
        if self.start < self.end {
            self.end = self.end.sub_one();
            Some(self.end.clone())
        } else {
            None
        }
    }
}

#[stable(feature = "fused", since = "1.26.0")]
impl<A: Step> FusedIterator for ops::Range<A> {}

#[stable(feature = "rust1", since = "1.0.0")]
impl<A: Step> Iterator for ops::RangeFrom<A> {
    type Item = A;

    #[inline]
    fn next(&mut self) -> Option<A> {
        let mut n = self.start.add_one();
        mem::swap(&mut n, &mut self.start);
        Some(n)
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        (usize::MAX, None)
    }

    #[inline]
    fn nth(&mut self, n: usize) -> Option<A> {
        let plus_n = self.start.add_usize(n).expect("overflow in RangeFrom::nth");
        self.start = plus_n.add_one();
        Some(plus_n)
    }
}

#[stable(feature = "fused", since = "1.26.0")]
impl<A: Step> FusedIterator for ops::RangeFrom<A> {}

#[unstable(feature = "trusted_len", issue = "37572")]
unsafe impl<A: Step> TrustedLen for ops::RangeFrom<A> {}

#[stable(feature = "inclusive_range", since = "1.26.0")]
impl<A: Step> Iterator for ops::RangeInclusive<A> {
    type Item = A;

    #[inline]
    fn next(&mut self) -> Option<A> {
        self.compute_is_empty();
        if self.is_empty.unwrap_or_default() {
            return None;
        }
        let is_iterating = self.start < self.end;
        self.is_empty = Some(!is_iterating);
        Some(if is_iterating {
            let n = self.start.add_one();
            mem::replace(&mut self.start, n)
        } else {
            self.start.clone()
        })
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        if self.is_empty() {
            return (0, Some(0));
        }

        match Step::steps_between(&self.start, &self.end) {
            Some(hint) => (hint.saturating_add(1), hint.checked_add(1)),
            None => (0, None),
        }
    }

    #[inline]
    fn nth(&mut self, n: usize) -> Option<A> {
        self.compute_is_empty();
        if self.is_empty.unwrap_or_default() {
            return None;
        }

        if let Some(plus_n) = self.start.add_usize(n) {
            use cmp::Ordering::*;

            match plus_n.partial_cmp(&self.end) {
                Some(Less) => {
                    self.is_empty = Some(false);
                    self.start = plus_n.add_one();
                    return Some(plus_n)
                }
                Some(Equal) => {
                    self.is_empty = Some(true);
                    return Some(plus_n)
                }
                _ => {}
            }
        }

        self.is_empty = Some(true);
        None
    }

    #[inline]
    fn last(mut self) -> Option<A> {
        self.next_back()
    }

    #[inline]
    fn min(mut self) -> Option<A> {
        self.next()
    }

    #[inline]
    fn max(mut self) -> Option<A> {
        self.next_back()
    }
}

#[stable(feature = "inclusive_range", since = "1.26.0")]
impl<A: Step> DoubleEndedIterator for ops::RangeInclusive<A> {
    #[inline]
    fn next_back(&mut self) -> Option<A> {
        self.compute_is_empty();
        if self.is_empty.unwrap_or_default() {
            return None;
        }
        let is_iterating = self.start < self.end;
        self.is_empty = Some(!is_iterating);
        Some(if is_iterating {
            let n = self.end.sub_one();
            mem::replace(&mut self.end, n)
        } else {
            self.end.clone()
        })
    }
}

#[stable(feature = "fused", since = "1.26.0")]
impl<A: Step> FusedIterator for ops::RangeInclusive<A> {}