1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
#![cfg(feature = "use_alloc")]
use Option::{self as State, None as ProductEnded, Some as ProductInProgress};
use Option::{self as CurrentItems, None as NotYetPopulated, Some as Populated};
use alloc::vec::Vec;
use crate::size_hint;
#[derive(Clone)]
/// An iterator adaptor that iterates over the cartesian product of
/// multiple iterators of type `I`.
///
/// An iterator element type is `Vec<I::Item>`.
///
/// See [`.multi_cartesian_product()`](crate::Itertools::multi_cartesian_product)
/// for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct MultiProduct<I>(State<MultiProductInner<I>>)
where
I: Iterator + Clone,
I::Item: Clone;
#[derive(Clone)]
/// Internals for `MultiProduct`.
struct MultiProductInner<I>
where
I: Iterator + Clone,
I::Item: Clone,
{
/// Holds the iterators.
iters: Vec<MultiProductIter<I>>,
/// Not populated at the beginning then it holds the current item of each iterator.
cur: CurrentItems<Vec<I::Item>>,
}
impl<I> std::fmt::Debug for MultiProduct<I>
where
I: Iterator + Clone + std::fmt::Debug,
I::Item: Clone + std::fmt::Debug,
{
debug_fmt_fields!(MultiProduct, 0);
}
impl<I> std::fmt::Debug for MultiProductInner<I>
where
I: Iterator + Clone + std::fmt::Debug,
I::Item: Clone + std::fmt::Debug,
{
debug_fmt_fields!(MultiProductInner, iters, cur);
}
/// Create a new cartesian product iterator over an arbitrary number
/// of iterators of the same type.
///
/// Iterator element is of type `Vec<H::Item::Item>`.
pub fn multi_cartesian_product<H>(iters: H) -> MultiProduct<<H::Item as IntoIterator>::IntoIter>
where
H: Iterator,
H::Item: IntoIterator,
<H::Item as IntoIterator>::IntoIter: Clone,
<H::Item as IntoIterator>::Item: Clone,
{
let inner = MultiProductInner {
iters: iters
.map(|i| MultiProductIter::new(i.into_iter()))
.collect(),
cur: NotYetPopulated,
};
MultiProduct(ProductInProgress(inner))
}
#[derive(Clone, Debug)]
/// Holds the state of a single iterator within a `MultiProduct`.
struct MultiProductIter<I>
where
I: Iterator + Clone,
I::Item: Clone,
{
iter: I,
iter_orig: I,
}
impl<I> MultiProductIter<I>
where
I: Iterator + Clone,
I::Item: Clone,
{
fn new(iter: I) -> Self {
Self {
iter: iter.clone(),
iter_orig: iter,
}
}
}
impl<I> Iterator for MultiProduct<I>
where
I: Iterator + Clone,
I::Item: Clone,
{
type Item = Vec<I::Item>;
fn next(&mut self) -> Option<Self::Item> {
// This fuses the iterator.
let inner = self.0.as_mut()?;
match &mut inner.cur {
Populated(values) => {
debug_assert!(!inner.iters.is_empty());
// Find (from the right) a non-finished iterator and
// reset the finished ones encountered.
for (iter, item) in inner.iters.iter_mut().zip(values.iter_mut()).rev() {
if let Some(new) = iter.iter.next() {
*item = new;
return Some(values.clone());
} else {
iter.iter = iter.iter_orig.clone();
// `cur` is populated so the untouched `iter_orig` can not be empty.
*item = iter.iter.next().unwrap();
}
}
self.0 = ProductEnded;
None
}
// Only the first time.
NotYetPopulated => {
let next: Option<Vec<_>> = inner.iters.iter_mut().map(|i| i.iter.next()).collect();
if next.is_none() || inner.iters.is_empty() {
// This cartesian product had at most one item to generate and now ends.
self.0 = ProductEnded;
} else {
inner.cur.clone_from(&next);
}
next
}
}
}
fn count(self) -> usize {
match self.0 {
ProductEnded => 0,
// The iterator is fresh so the count is the product of the length of each iterator:
// - If one of them is empty, stop counting.
// - Less `count()` calls than the general case.
ProductInProgress(MultiProductInner {
iters,
cur: NotYetPopulated,
}) => iters
.into_iter()
.map(|iter| iter.iter_orig.count())
.try_fold(1, |product, count| {
if count == 0 {
None
} else {
Some(product * count)
}
})
.unwrap_or_default(),
// The general case.
ProductInProgress(MultiProductInner {
iters,
cur: Populated(_),
}) => iters.into_iter().fold(0, |mut acc, iter| {
if acc != 0 {
acc *= iter.iter_orig.count();
}
acc + iter.iter.count()
}),
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
match &self.0 {
ProductEnded => (0, Some(0)),
ProductInProgress(MultiProductInner {
iters,
cur: NotYetPopulated,
}) => iters
.iter()
.map(|iter| iter.iter_orig.size_hint())
.fold((1, Some(1)), size_hint::mul),
ProductInProgress(MultiProductInner {
iters,
cur: Populated(_),
}) => {
if let [first, tail @ ..] = &iters[..] {
tail.iter().fold(first.iter.size_hint(), |mut sh, iter| {
sh = size_hint::mul(sh, iter.iter_orig.size_hint());
size_hint::add(sh, iter.iter.size_hint())
})
} else {
// Since it is populated, this cartesian product has started so `iters` is not empty.
unreachable!()
}
}
}
}
fn last(self) -> Option<Self::Item> {
let MultiProductInner { iters, cur } = self.0?;
// Collect the last item of each iterator of the product.
if let Populated(values) = cur {
let mut count = iters.len();
let last = iters
.into_iter()
.zip(values)
.map(|(i, value)| {
i.iter.last().unwrap_or_else(|| {
// The iterator is empty, use its current `value`.
count -= 1;
value
})
})
.collect();
if count == 0 {
// `values` was the last item.
None
} else {
Some(last)
}
} else {
iters.into_iter().map(|i| i.iter.last()).collect()
}
}
}
impl<I> std::iter::FusedIterator for MultiProduct<I>
where
I: Iterator + Clone,
I::Item: Clone,
{
}